blob: 71fc149adb6c964eb222a00665e6506df861c000 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 5.8 Page 300 \n'); //Example 5.8
// Thermal Conductivity of Nanostructured material
//Operating Conditions
k = 1.11 ; //[W/m.K] Thermal Conductivity
rho = 3100; //[kg/m^3] Density
c = 820 ; //[J/kg.K] Specific Heat
//Dimensions of Strip
w = 100*10^-6; //[m] Width
L = .0035 ; //[m] Long
d = 3000*10^-10; //[m] Thickness
delq = 3.5*10^-3; //[W] heating Rate
delT1 =1.37 ; //[K] Temperature 1
f1 = 2*%pi ; //[rad/s] Frequency 1
delT2 =.71 ; //[K] Temperature 2
f2 = 200*%pi; //[rad/s] Frequency 2
A = [delT1 -delq/(L*%pi);
delT2 -delq/(L*%pi)] ;
C= [delq*-2.30*log10(f1/2)/(2*L*%pi);
delq*-2.30*log10(f2/2)/(2*L*%pi)] ;
B = inv(A)*C;
alpha = k/(rho*c);
delp = [(alpha/f1)^.5 (alpha/f2)^.5];
printf("\n C2 = %.2f k = %.2f W/m.K \n\n Thermal Penetration depths are %.2e m and %.2e m at frequency 2*pi rad/s and 200*pi rad/s" ,B(2),B(1), delp);
//END
|