diff options
Diffstat (limited to '534/CH5/EX5.8/5_8_Nanostructured_Material.sce')
-rw-r--r-- | 534/CH5/EX5.8/5_8_Nanostructured_Material.sce | 33 |
1 files changed, 33 insertions, 0 deletions
diff --git a/534/CH5/EX5.8/5_8_Nanostructured_Material.sce b/534/CH5/EX5.8/5_8_Nanostructured_Material.sce new file mode 100644 index 000000000..71fc149ad --- /dev/null +++ b/534/CH5/EX5.8/5_8_Nanostructured_Material.sce @@ -0,0 +1,33 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 5.8 Page 300 \n'); //Example 5.8
+// Thermal Conductivity of Nanostructured material
+
+//Operating Conditions
+
+k = 1.11 ; //[W/m.K] Thermal Conductivity
+rho = 3100; //[kg/m^3] Density
+c = 820 ; //[J/kg.K] Specific Heat
+//Dimensions of Strip
+w = 100*10^-6; //[m] Width
+L = .0035 ; //[m] Long
+d = 3000*10^-10; //[m] Thickness
+delq = 3.5*10^-3; //[W] heating Rate
+delT1 =1.37 ; //[K] Temperature 1
+f1 = 2*%pi ; //[rad/s] Frequency 1
+delT2 =.71 ; //[K] Temperature 2
+f2 = 200*%pi; //[rad/s] Frequency 2
+
+A = [delT1 -delq/(L*%pi);
+ delT2 -delq/(L*%pi)] ;
+
+C= [delq*-2.30*log10(f1/2)/(2*L*%pi);
+ delq*-2.30*log10(f2/2)/(2*L*%pi)] ;
+
+B = inv(A)*C;
+
+alpha = k/(rho*c);
+delp = [(alpha/f1)^.5 (alpha/f2)^.5];
+printf("\n C2 = %.2f k = %.2f W/m.K \n\n Thermal Penetration depths are %.2e m and %.2e m at frequency 2*pi rad/s and 200*pi rad/s" ,B(2),B(1), delp);
+
+//END
\ No newline at end of file |