1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 2.1 Page 68 \n')//Example 2.1
// Find Value for Thermal Diffusivity
function a=alpha(p, Cp, k)
a=k/(p*Cp); //[m^2/s]
funcprot(0);
endfunction
//(a) Pure Aluminium at 300K
// From Appendix A, Table A.1
p = 2702; //[Kg/m^3] - Density Of Material
Cp = 903; //[J/kg.K] - Specific heat of Material
k = 237; //[W/m.k] - Thermal Conductivity of Material
printf("\n (a) Thermal Diffuisivity of Pure Aluminium at 300K = %.2e m^2/s\n",alpha(p, Cp, k));
//(b) Pure Aluminium at 700K
// From Appendix A, Table A.1
p = 2702; //[Kg/m^3] - Density Of Material
Cp = 1090; //[J/kg.K] - Specific heat of Material
k = 225; //[W/m.k] - Thermal Conductivity of Material
printf("\n (b) Thermal Diffuisivity of Pure Aluminium at 700K = %.2e m^2/s\n",alpha(p, Cp, k));
//(c) Silicon Carbide at 1000K
// From Appendix A, Table A.2
p = 3160; //[Kg/m^3] - Density Of Material
Cp = 1195; //[J/kg.K] - Specific heat of Material
k = 87; //[W/m.k] - Thermal Conductivity of Material
printf("\n (c) Thermal Diffuisivity of Silicon Carbide at 1000K = %.2e m^2/s\n",alpha(p, Cp, k));
//(d) Paraffin at 300K
// From Appendix A, Table A.3
p = 900; //[Kg/m^3] - Density Of Material
Cp = 2890; //[J/kg.K] - Specific heat of Material
k = .24; //[W/m.k] - Thermal Conductivity of Material
printf("\n (d) Thermal Diffuisivity of Paraffin at 300K = %.2e m^2/s",alpha(p, Cp, k));
//END
|