clear; clc; printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 2.1 Page 68 \n')//Example 2.1 // Find Value for Thermal Diffusivity function a=alpha(p, Cp, k) a=k/(p*Cp); //[m^2/s] funcprot(0); endfunction //(a) Pure Aluminium at 300K // From Appendix A, Table A.1 p = 2702; //[Kg/m^3] - Density Of Material Cp = 903; //[J/kg.K] - Specific heat of Material k = 237; //[W/m.k] - Thermal Conductivity of Material printf("\n (a) Thermal Diffuisivity of Pure Aluminium at 300K = %.2e m^2/s\n",alpha(p, Cp, k)); //(b) Pure Aluminium at 700K // From Appendix A, Table A.1 p = 2702; //[Kg/m^3] - Density Of Material Cp = 1090; //[J/kg.K] - Specific heat of Material k = 225; //[W/m.k] - Thermal Conductivity of Material printf("\n (b) Thermal Diffuisivity of Pure Aluminium at 700K = %.2e m^2/s\n",alpha(p, Cp, k)); //(c) Silicon Carbide at 1000K // From Appendix A, Table A.2 p = 3160; //[Kg/m^3] - Density Of Material Cp = 1195; //[J/kg.K] - Specific heat of Material k = 87; //[W/m.k] - Thermal Conductivity of Material printf("\n (c) Thermal Diffuisivity of Silicon Carbide at 1000K = %.2e m^2/s\n",alpha(p, Cp, k)); //(d) Paraffin at 300K // From Appendix A, Table A.3 p = 900; //[Kg/m^3] - Density Of Material Cp = 2890; //[J/kg.K] - Specific heat of Material k = .24; //[W/m.k] - Thermal Conductivity of Material printf("\n (d) Thermal Diffuisivity of Paraffin at 300K = %.2e m^2/s",alpha(p, Cp, k)); //END