blob: ba9f102c8f2c134adc9781998eabc13ffcf7b6bf (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
clear all;
clc;
// A Textbook on HEAT TRANSFER by S P SUKHATME
// Chapter 3
// Thermal Radiation
// Example 3.11
// Page 141
printf("Example 3.11, Page 141 \n\n")
// All modes of heat transfer are involved
// let steady state heat flux flowing through the composite slab be (q/a)
h1 = 20; //[W/m^2 K]
w1 = 0.2; //[m]
k1 = 1; //[W/m K]
e1 = 0.5; //emmisivity at surfce 1
e2 = 0.4; //emmisivity at surfce 2
w2 = 0.3; //[m]
k2 = 0.5; //[W/m K]
h2 = 10; //[W/m^2 K]
T1 = 473; //[Kelvin]
T2 = 273+40; //[Kelvin]
stefan_cnst = 5.67e-08; //[W/m^2 K^4]
// For resistances 1 and 2
function[f]=temperature(T)
f(1) = (T1-T(1))/(1/h1 + w1/k1) - (T(2) - T2)/(w2/k2 + 1/h2);
f(2) = stefan_cnst*(T(1)^4 - T(2)^4)/(1/e1 + 1/e2 -1) - (T(2) - T2)/(w2/k2 + 1/h2);
funcprot(0);
endfunction
T = [10 10]; // assumed initial values for fsolve function
y = fsolve(T,temperature);
printf("\n Steady state heat flux q/A = %.1f W/m^2",(T1-y(1))/(1/h1 + w1/k1));
|