clear all; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 3 // Thermal Radiation // Example 3.11 // Page 141 printf("Example 3.11, Page 141 \n\n") // All modes of heat transfer are involved // let steady state heat flux flowing through the composite slab be (q/a) h1 = 20; //[W/m^2 K] w1 = 0.2; //[m] k1 = 1; //[W/m K] e1 = 0.5; //emmisivity at surfce 1 e2 = 0.4; //emmisivity at surfce 2 w2 = 0.3; //[m] k2 = 0.5; //[W/m K] h2 = 10; //[W/m^2 K] T1 = 473; //[Kelvin] T2 = 273+40; //[Kelvin] stefan_cnst = 5.67e-08; //[W/m^2 K^4] // For resistances 1 and 2 function[f]=temperature(T) f(1) = (T1-T(1))/(1/h1 + w1/k1) - (T(2) - T2)/(w2/k2 + 1/h2); f(2) = stefan_cnst*(T(1)^4 - T(2)^4)/(1/e1 + 1/e2 -1) - (T(2) - T2)/(w2/k2 + 1/h2); funcprot(0); endfunction T = [10 10]; // assumed initial values for fsolve function y = fsolve(T,temperature); printf("\n Steady state heat flux q/A = %.1f W/m^2",(T1-y(1))/(1/h1 + w1/k1));