1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
//Chemical Engineering Thermodynamics
//Chapter 14
//Thermodynamics of Chemical Reactions
//Example 14.7
clear;
clc;
//Given
//SO2 + (1/2)O2 - SO3
//Basis: 1 Kgmole of SO2
n_SO2 = 1;// SO2 fed in Kgmole
n_O2 = n_SO2;//O2 fed in kgmole
//To Calculate the conversion of SO2 to SO3 at 1atm and at various temperature
//(1)Calculate the conversion of SO2 to SO3
P = 1;//Pressure in atm
T = 850;//Temperature in K
m = 1-1-(1/2);
//From example 14.6
Ta = [700 800 825 850 900 1000 1100 1300 1500];
Ka = [395.40 52.51 34.60 23.44 11.59 3.527 1.48 0.398 0.0016];
clf;
xset('window',2);
plot2d(Ta,Ka,style=3);
xtitle("Equilibrium constant vs Temperature","Temperature in K","Ka");
Ka1 = interpln([Ta;Ka],850);
//Let Nc be the moles of SO3 at equilibrium
Nc = [0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 0.930 0.95 0.98 0.988 0.989 0.9895 0.9897 0.9899 0.9900];
//From equation 14.49 (page no 320) and using the given data ,we got equation (b) (page no 323)
for i = 1:17
Ka(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)));
end
xset('window',1);
plot2d(Nc,Ka,style=2);
xtitle("Equilibrium constant vs Kgmoles of SO3","Kg moles of SO3","Ka");
Nc1 = interpln([Ka;Nc],Ka1);
C = Nc1*100/n_SO2;
mprintf('(1)The conversion of SO2 to SO3 at 1atm and 850K is %f percent',C);
//(2)Calculation of conversion at 1 atm and 850 K under the following conditions
//(i) Given:
n_N2 = 3.75;//Kgmoles of N2 fed
//Let Nc be the moles of SO3 at equilibrium
Nc = [0.85 0.87 0.90];
//From equation 14.49 (page no 320) and using the given data ,we got equation (c) (page no 324)
for i = 1:3
Ka2(i) = (((+n_N2+n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)));
end
xset('window',1);
plot2d(Nc,Ka2,style=5);
Nc2 = interpln([Ka2';Nc],Ka1);
C2 = Nc2*100/n_SO2;
mprintf('\n\n (2)(i)The conversion of SO2 to SO3 at 1 atm and 850 K when inert gas is also added is %f percent',C2);
//(ii)SO3 is also sent along the original feed
n_SO3 = 1;//Kgmoles of SO3 fed
//Let Nc be the moles of SO3 at equilibrium
Nc = [0.80 0.86 0.92];
//From equation 14.49 (page no 320) and using the given data ,we got equation (d) (page no 326)
for i = 1:3
Ka3(i) = (((+n_SO3+n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*((n_SO3+Nc(i))/(n_SO2-Nc(i)));
end
xset('window',1);
plot2d(Nc,Ka3,style=6);
Nc3 = interpln([Ka3';Nc],Ka1);
C3 = Nc3*100/n_SO2;
mprintf('\n (ii)The conversion of SO2 to SO3 at 1 atm and 850 K when SO3 is also added along the original feed is %f percent',C3);
//(iii)Variation of SO2 to O2 ratio:
//(a)SO2:O2 = 1:1 ; This has been worked out in part 1
mprintf('\n (iii)(a)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:1 is %f percent',C);
Xc = Nc1/(n_SO2+n_O2-0.5*Nc1);
//(b)SO2:O2 = 1.1:0.5,Now
n_SO2 = 1.1;//Kgmoles of SO2 fed
n_O2 = 0.5;//Kgmoles of O2 fed
//Let Nc be the moles of SO3 at equilibrium
Nc = [0.9 0.91 0.92];
//From equation 14.49 (page no 320) and using the given data ,we got equation (e) (page no 327)
for i = 1:3
Ka4(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)));
end
xset('window',1);
plot2d(Nc,Ka4,style=1);
Nc4 = interpln([Ka4';Nc],Ka1);
C4 = Nc4*100/n_SO2;
mprintf('\n (iii)(b)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1.1:0.5 is %f percent',C4);
Xc1 = Nc4/(n_SO2+n_O2-0.5*Nc4);
//(c)SO2:O2 = 1:0.5
n_SO2 = 1;//Kgmoles of SO2 fed
n_O2 = 0.5;//Kgmoles of O2 fed
//Let Nc be the moles of SO3 at equilibrium
Nc = [0.8 0.85 0.86 0.87];
//From equation (a)
for i = 1:4
Ka5(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)));
end
xset('window',1);
plot2d(Nc,Ka5,style=4);
Nc5 = interpln([Ka5';Nc],Ka1);
C5 = Nc5*100/n_SO2;
mprintf('\n (iii)(c)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:0.5 is %f percent',C5);
Xc2 = Nc5/(n_SO2+n_O2-0.5*Nc5);
if(Xc2>Xc) and (Xc2>Xc1)
mprintf('\n SO2:O2 = 1:0.5 gives the maximum concentration of SO3 at equilibrium.');
else
if(Xc1>Xc) and (Xc1>Xc2)
mprintf('\n SO2:O2 = 1.1:0.5 gives the maximum concentration of SO3 at equilibrium');
else
if(Xc>Xc1) and (Xc>Xc2)
mprintf('\n SO2:O2 = 1:1 gives the maximum concentration of SO3 at equilibrium');
end
end
end
//(3)Conversion of SO2 to SO3 at 50 atm and 850 K when SO2:O2 = 1:1
n_SO2 = 1;//Kgmole of SO2 fed
n_O2 = 1;//Kgmoles of O2 fed
P = 50;//Pressure in atm
//From figure A.2.9
phi_SO2 = 0.99;
phi_SO3 = 0.972;
phi_O2 = 1;
//From equation 14.48 (page no320), Ka = Ky*(P^m)*K_phi
K_phi = phi_SO3/(phi_SO2*(phi_O2^2));
//Let Nc be the moles of SO3 at equilibrium
Nc = [0.99 0.985 0.97 0.96];
for i = 1:4
Ka6(i) = K_phi*(P^m)*((((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i))));
end
xset('window',1);
plot2d(Nc,Ka6,style=3);
Nc6 = interpln([Ka6';Nc],Ka1);
C = Nc6*100/n_SO2;
mprintf('\n\n (3)The conversion of SO2 to SO3 at 50atm and 850K when SO2:O2 = 1:1 is %f percent',C);
legend("1 part","2.(i) part","2.(ii)part","2.(iii).(b)part","2.(iii).(c)part","3 part");
//end
|