//Chemical Engineering Thermodynamics //Chapter 14 //Thermodynamics of Chemical Reactions //Example 14.7 clear; clc; //Given //SO2 + (1/2)O2 - SO3 //Basis: 1 Kgmole of SO2 n_SO2 = 1;// SO2 fed in Kgmole n_O2 = n_SO2;//O2 fed in kgmole //To Calculate the conversion of SO2 to SO3 at 1atm and at various temperature //(1)Calculate the conversion of SO2 to SO3 P = 1;//Pressure in atm T = 850;//Temperature in K m = 1-1-(1/2); //From example 14.6 Ta = [700 800 825 850 900 1000 1100 1300 1500]; Ka = [395.40 52.51 34.60 23.44 11.59 3.527 1.48 0.398 0.0016]; clf; xset('window',2); plot2d(Ta,Ka,style=3); xtitle("Equilibrium constant vs Temperature","Temperature in K","Ka"); Ka1 = interpln([Ta;Ka],850); //Let Nc be the moles of SO3 at equilibrium Nc = [0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 0.930 0.95 0.98 0.988 0.989 0.9895 0.9897 0.9899 0.9900]; //From equation 14.49 (page no 320) and using the given data ,we got equation (b) (page no 323) for i = 1:17 Ka(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i))); end xset('window',1); plot2d(Nc,Ka,style=2); xtitle("Equilibrium constant vs Kgmoles of SO3","Kg moles of SO3","Ka"); Nc1 = interpln([Ka;Nc],Ka1); C = Nc1*100/n_SO2; mprintf('(1)The conversion of SO2 to SO3 at 1atm and 850K is %f percent',C); //(2)Calculation of conversion at 1 atm and 850 K under the following conditions //(i) Given: n_N2 = 3.75;//Kgmoles of N2 fed //Let Nc be the moles of SO3 at equilibrium Nc = [0.85 0.87 0.90]; //From equation 14.49 (page no 320) and using the given data ,we got equation (c) (page no 324) for i = 1:3 Ka2(i) = (((+n_N2+n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i))); end xset('window',1); plot2d(Nc,Ka2,style=5); Nc2 = interpln([Ka2';Nc],Ka1); C2 = Nc2*100/n_SO2; mprintf('\n\n (2)(i)The conversion of SO2 to SO3 at 1 atm and 850 K when inert gas is also added is %f percent',C2); //(ii)SO3 is also sent along the original feed n_SO3 = 1;//Kgmoles of SO3 fed //Let Nc be the moles of SO3 at equilibrium Nc = [0.80 0.86 0.92]; //From equation 14.49 (page no 320) and using the given data ,we got equation (d) (page no 326) for i = 1:3 Ka3(i) = (((+n_SO3+n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*((n_SO3+Nc(i))/(n_SO2-Nc(i))); end xset('window',1); plot2d(Nc,Ka3,style=6); Nc3 = interpln([Ka3';Nc],Ka1); C3 = Nc3*100/n_SO2; mprintf('\n (ii)The conversion of SO2 to SO3 at 1 atm and 850 K when SO3 is also added along the original feed is %f percent',C3); //(iii)Variation of SO2 to O2 ratio: //(a)SO2:O2 = 1:1 ; This has been worked out in part 1 mprintf('\n (iii)(a)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:1 is %f percent',C); Xc = Nc1/(n_SO2+n_O2-0.5*Nc1); //(b)SO2:O2 = 1.1:0.5,Now n_SO2 = 1.1;//Kgmoles of SO2 fed n_O2 = 0.5;//Kgmoles of O2 fed //Let Nc be the moles of SO3 at equilibrium Nc = [0.9 0.91 0.92]; //From equation 14.49 (page no 320) and using the given data ,we got equation (e) (page no 327) for i = 1:3 Ka4(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i))); end xset('window',1); plot2d(Nc,Ka4,style=1); Nc4 = interpln([Ka4';Nc],Ka1); C4 = Nc4*100/n_SO2; mprintf('\n (iii)(b)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1.1:0.5 is %f percent',C4); Xc1 = Nc4/(n_SO2+n_O2-0.5*Nc4); //(c)SO2:O2 = 1:0.5 n_SO2 = 1;//Kgmoles of SO2 fed n_O2 = 0.5;//Kgmoles of O2 fed //Let Nc be the moles of SO3 at equilibrium Nc = [0.8 0.85 0.86 0.87]; //From equation (a) for i = 1:4 Ka5(i) = (((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i))); end xset('window',1); plot2d(Nc,Ka5,style=4); Nc5 = interpln([Ka5';Nc],Ka1); C5 = Nc5*100/n_SO2; mprintf('\n (iii)(c)The conversion of SO2 to SO3 at 1atm and 850K when SO2:O2 = 1:0.5 is %f percent',C5); Xc2 = Nc5/(n_SO2+n_O2-0.5*Nc5); if(Xc2>Xc) and (Xc2>Xc1) mprintf('\n SO2:O2 = 1:0.5 gives the maximum concentration of SO3 at equilibrium.'); else if(Xc1>Xc) and (Xc1>Xc2) mprintf('\n SO2:O2 = 1.1:0.5 gives the maximum concentration of SO3 at equilibrium'); else if(Xc>Xc1) and (Xc>Xc2) mprintf('\n SO2:O2 = 1:1 gives the maximum concentration of SO3 at equilibrium'); end end end //(3)Conversion of SO2 to SO3 at 50 atm and 850 K when SO2:O2 = 1:1 n_SO2 = 1;//Kgmole of SO2 fed n_O2 = 1;//Kgmoles of O2 fed P = 50;//Pressure in atm //From figure A.2.9 phi_SO2 = 0.99; phi_SO3 = 0.972; phi_O2 = 1; //From equation 14.48 (page no320), Ka = Ky*(P^m)*K_phi K_phi = phi_SO3/(phi_SO2*(phi_O2^2)); //Let Nc be the moles of SO3 at equilibrium Nc = [0.99 0.985 0.97 0.96]; for i = 1:4 Ka6(i) = K_phi*(P^m)*((((n_SO2+n_O2-0.5*Nc(i))/(n_O2-0.5*Nc(i)))^(1/2))*(Nc(i)/(n_SO2-Nc(i)))); end xset('window',1); plot2d(Nc,Ka6,style=3); Nc6 = interpln([Ka6';Nc],Ka1); C = Nc6*100/n_SO2; mprintf('\n\n (3)The conversion of SO2 to SO3 at 50atm and 850K when SO2:O2 = 1:1 is %f percent',C); legend("1 part","2.(i) part","2.(ii)part","2.(iii).(b)part","2.(iii).(c)part","3 part"); //end