summaryrefslogtreecommitdiff
path: root/476/CH5/EX5.23/Example_5_23.sce
blob: a2b3470ec4bcd6efc9fe4f185ec43227526b41ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 23


clear;
clc;


//Given:
r = 15; //compression ratio
P1 = 100; //pressure in the beginning (kPa)
T1 = 300; //temperature in thebeginning (K)
Q1 = 500; //heat transfer rate (kJ/kg)
M = 29; //molecular wt of air
R = 8.314; //ideal gas constant

//Specific heats of air (kJ/kg K)
Cp = 1.005;
Cv = 0.718;
gama = Cp/Cv
//To determine work done thermal efficiency and mean effective pressure
//Referring fig 5.25 (Page no. 167)

//(a)
//Isentropic compression 1-2
V1 = (R*1000*T1)/(M*P1*10^3);
T2 = T1*r^(gama-1);
P2 = P1*r^gama;
V2 = V1/r;
mprintf('(a)');
mprintf('\n At the end of first process');
mprintf('\n Temperature = %f K',T2);
mprintf('\n Pressure = %f kPa',P2);

//Consatnt pressure heat addition 2-3
T3 = Q1/Cp + T2;
V3 = (T3/T2)*V2;
P3 = P2;
mprintf('\n\n At the end of second process');
mprintf('\n Temperature = %f k',T3);
mprintf('\n Pressure = %f kPa',P3);

//Isentropic expansion 3-4
V4 = V1;
T4 = T3/((V4/V3)^(gama-1));
P4 = P3*((V3/V4)^gama);
mprintf('\n\n At the end of third process');
mprintf('\n Temperature = %f K',T4);
mprintf('\n Pressure = %f kPa',P4);
Q2 = Cv*(T4-T1); //heat rejected 4-1

//(b)
Wnet = Q1-Q2;
mprintf('\n\n (b)');
mprintf('\n Net work done per cycle per kg air is %f kJ/kg',Wnet);

//(c)
eff = Wnet/Q1; //thermal efficiency
mprintf('\n\n (c)');
mprintf('\n Thermal efficiency is %f',eff);

//(d)
Pm = Wnet/(V1-V2); //mean effective pressure
mprintf('\n\n (d)');
mprintf('\n Mean effective pressure is %f kPa',Pm);

//end