//A Textbook of Chemical Engineering Thermodynamics //Chapter 5 //Some Applications of the Laws of Thermodynamics //Example 23 clear; clc; //Given: r = 15; //compression ratio P1 = 100; //pressure in the beginning (kPa) T1 = 300; //temperature in thebeginning (K) Q1 = 500; //heat transfer rate (kJ/kg) M = 29; //molecular wt of air R = 8.314; //ideal gas constant //Specific heats of air (kJ/kg K) Cp = 1.005; Cv = 0.718; gama = Cp/Cv //To determine work done thermal efficiency and mean effective pressure //Referring fig 5.25 (Page no. 167) //(a) //Isentropic compression 1-2 V1 = (R*1000*T1)/(M*P1*10^3); T2 = T1*r^(gama-1); P2 = P1*r^gama; V2 = V1/r; mprintf('(a)'); mprintf('\n At the end of first process'); mprintf('\n Temperature = %f K',T2); mprintf('\n Pressure = %f kPa',P2); //Consatnt pressure heat addition 2-3 T3 = Q1/Cp + T2; V3 = (T3/T2)*V2; P3 = P2; mprintf('\n\n At the end of second process'); mprintf('\n Temperature = %f k',T3); mprintf('\n Pressure = %f kPa',P3); //Isentropic expansion 3-4 V4 = V1; T4 = T3/((V4/V3)^(gama-1)); P4 = P3*((V3/V4)^gama); mprintf('\n\n At the end of third process'); mprintf('\n Temperature = %f K',T4); mprintf('\n Pressure = %f kPa',P4); Q2 = Cv*(T4-T1); //heat rejected 4-1 //(b) Wnet = Q1-Q2; mprintf('\n\n (b)'); mprintf('\n Net work done per cycle per kg air is %f kJ/kg',Wnet); //(c) eff = Wnet/Q1; //thermal efficiency mprintf('\n\n (c)'); mprintf('\n Thermal efficiency is %f',eff); //(d) Pm = Wnet/(V1-V2); //mean effective pressure mprintf('\n\n (d)'); mprintf('\n Mean effective pressure is %f kPa',Pm); //end