blob: ff212976400bae800b5f160dbdb2072694ad47b3 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
//Electric Power Generation, Transmission and Distribution by S.N.Singh
//Publisher:PHI Learning Private Limited
//Year: 2012 ; Edition - 2
//Example 3.4
//Scilab Version : 6.0.0 ; OS : Windows
clc;
clear;
MVAnew=100; //MVA reference in MVA
KVnew=11; //KV reference before Transformer in kV
KVnew1=132; //KV reference after Transformer in kV
MVAg1=100; //Apparent power in Generator 1 in MVA
KVg1=11; //Voltage at Generator bus 1 in kV
Xg1=0.25; //Reactance of Generator 1 at individual p.u. Ohm
MVAg2=150; //Apparent power in Generator 2 in MVA
KVg2=16; //Voltage at Generator bus 2 in kV
Xg2=0.10; //Reactance of Generator 2 at individual p.u Ohm
MVAg3=200; //Apparent power in Generator 3 in MVA
KVg3=21; //Voltage at Generator bus 3 in kV
Xg3=0.15; //Reactance of Generator 3 at individual p.u Ohm
MVAt1=150; //Apparent power in Transformer 1 in MVA
t1pry=11; //Primary voltage in Transformer 1 in kV
t1sec=132; //Secondary voltage in Transformer 1 in kV
Xt1=0.05; //Reactance of Transformer 1 at individual p.u Ohm
MVAt2=200; //Apparent power in Transformer 2 in MVA
t2pry=16; //Primary voltage in Transformer 2 in kV
t2sec=132; //Secondary voltage in Transformer 2 in kV
Xt2=0.10; //Reactance of Transformer 2 at individual p.u Ohm
MVAt3=250; //Apparent power in Transformer 3 in MVA
t3pry=21; //Primary voltage in Transformer 3 in kV
t3sec=132; //Secondary voltage in Transformer 3 in kV
Xt3=0.05; //Reactance of Transformer 3 at individual p.u Ohm
Xl1=100; //Reactance of Transmission line 1 at individual p.u Ohm
Xl2=50; //Reactance of Transmission line 2 at individual p.u Ohm
Xl3=80; //Reactance of Transmission line 3 at individual p.u Ohm
X1=Xg1*(MVAnew/MVAg1)*(KVg1/KVnew)^2; //Reactance of Generator 1 at individual p.u Ohm
X2=Xg2*(MVAnew/MVAg2)*(KVg2/KVnew)^2; //Reactance of Generator 2 at individual p.u Ohm
X3=Xg3*(MVAnew/MVAg3)*(KVg3/KVnew)^2; //Reactance of Generator 3 at individual p.u Ohm
T1=Xt1*(MVAnew/MVAt1)*(t1pry/KVnew)^2; //Impedance of Transformer 1 at individual p.u Ohm
T2=Xt2*(MVAnew/MVAt2)*(t2pry/KVnew)^2; //Impedance of Transformer 2 at individual p.u Ohm
T3=Xt3*(MVAnew/MVAt3)*(t3pry/KVnew)^2; //Impedance of Transformer 3 at individual p.u Ohm
Zb=((KVnew1)^2)/MVAnew; //Base Reactance of Transmission line at Ohm
L1=Xl1/Zb; //Reactance of Transmission line 1 at individual p.u Ohm
L2=Xl2/Zb; //Reactance of Transmission line 2 at individual p.u Ohm
L3=Xl3/Zb; //Reactance of Transmission line 3 at individual p.u Ohm
printf("\nPer unit impedance of Generator 1 is %.3f p.u",X1);
printf("\nPer unit impedance of Generator 2 is %.3f p.u",X2);
printf("\nPer unit impedance of Generator 3 is %.3f p.u",X3);
printf("\nPer unit impedance of Transformer 1 is %.3f p.u",T1);
printf("\nPer unit impedance of Transformer 2 is %.3f p.u",T2);
printf("\nPer unit impedance of Transformer 3 is %.3f p.u",T3);
printf("\nPer unit Reactance of line 1 is %.3f p.u",L1);
printf("\nPer unit Reactance of line 2 is %.3f p.u",L2);
printf("\nPer unit Reactance of line 3 is %.3f p.u",L3);
|