//Electric Power Generation, Transmission and Distribution by S.N.Singh //Publisher:PHI Learning Private Limited //Year: 2012 ; Edition - 2 //Example 3.4 //Scilab Version : 6.0.0 ; OS : Windows clc; clear; MVAnew=100; //MVA reference in MVA KVnew=11; //KV reference before Transformer in kV KVnew1=132; //KV reference after Transformer in kV MVAg1=100; //Apparent power in Generator 1 in MVA KVg1=11; //Voltage at Generator bus 1 in kV Xg1=0.25; //Reactance of Generator 1 at individual p.u. Ohm MVAg2=150; //Apparent power in Generator 2 in MVA KVg2=16; //Voltage at Generator bus 2 in kV Xg2=0.10; //Reactance of Generator 2 at individual p.u Ohm MVAg3=200; //Apparent power in Generator 3 in MVA KVg3=21; //Voltage at Generator bus 3 in kV Xg3=0.15; //Reactance of Generator 3 at individual p.u Ohm MVAt1=150; //Apparent power in Transformer 1 in MVA t1pry=11; //Primary voltage in Transformer 1 in kV t1sec=132; //Secondary voltage in Transformer 1 in kV Xt1=0.05; //Reactance of Transformer 1 at individual p.u Ohm MVAt2=200; //Apparent power in Transformer 2 in MVA t2pry=16; //Primary voltage in Transformer 2 in kV t2sec=132; //Secondary voltage in Transformer 2 in kV Xt2=0.10; //Reactance of Transformer 2 at individual p.u Ohm MVAt3=250; //Apparent power in Transformer 3 in MVA t3pry=21; //Primary voltage in Transformer 3 in kV t3sec=132; //Secondary voltage in Transformer 3 in kV Xt3=0.05; //Reactance of Transformer 3 at individual p.u Ohm Xl1=100; //Reactance of Transmission line 1 at individual p.u Ohm Xl2=50; //Reactance of Transmission line 2 at individual p.u Ohm Xl3=80; //Reactance of Transmission line 3 at individual p.u Ohm X1=Xg1*(MVAnew/MVAg1)*(KVg1/KVnew)^2; //Reactance of Generator 1 at individual p.u Ohm X2=Xg2*(MVAnew/MVAg2)*(KVg2/KVnew)^2; //Reactance of Generator 2 at individual p.u Ohm X3=Xg3*(MVAnew/MVAg3)*(KVg3/KVnew)^2; //Reactance of Generator 3 at individual p.u Ohm T1=Xt1*(MVAnew/MVAt1)*(t1pry/KVnew)^2; //Impedance of Transformer 1 at individual p.u Ohm T2=Xt2*(MVAnew/MVAt2)*(t2pry/KVnew)^2; //Impedance of Transformer 2 at individual p.u Ohm T3=Xt3*(MVAnew/MVAt3)*(t3pry/KVnew)^2; //Impedance of Transformer 3 at individual p.u Ohm Zb=((KVnew1)^2)/MVAnew; //Base Reactance of Transmission line at Ohm L1=Xl1/Zb; //Reactance of Transmission line 1 at individual p.u Ohm L2=Xl2/Zb; //Reactance of Transmission line 2 at individual p.u Ohm L3=Xl3/Zb; //Reactance of Transmission line 3 at individual p.u Ohm printf("\nPer unit impedance of Generator 1 is %.3f p.u",X1); printf("\nPer unit impedance of Generator 2 is %.3f p.u",X2); printf("\nPer unit impedance of Generator 3 is %.3f p.u",X3); printf("\nPer unit impedance of Transformer 1 is %.3f p.u",T1); printf("\nPer unit impedance of Transformer 2 is %.3f p.u",T2); printf("\nPer unit impedance of Transformer 3 is %.3f p.u",T3); printf("\nPer unit Reactance of line 1 is %.3f p.u",L1); printf("\nPer unit Reactance of line 2 is %.3f p.u",L2); printf("\nPer unit Reactance of line 3 is %.3f p.u",L3);