1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
//Analyse truss
//Refer fig. 4.12 (a)
//All triangles are equilateral
//applying equilibrium conditions At
//Joint G
FGF=20/sind(60) //kN (Tension)
FGE=FGF*cosd(60) //kN (Compression)
//Joint F
FFE=FGF //kN (Compression)
FFD=FGF*cosd(60)+FFE*cosd(60)-10 //kN (Tension)
//Consider eqiulibrium of entire truss
RE=(-10*3*sind(60)+40*3*cosd(60)+30*(3+3*cosd(60))+20*9)/6 //kN
VA=(40+30+20)-58.17 //kN
HA=10 //kN
//Joint A
FAB=31.83/sind(60) //kN (Compression)
FAC=36.75*cosd(60)-10 //kN (Tension)
//Joint B
FBC=(40-FAB*sind(60))/sind(60) //kN (Compression)
FBD=36.75*cosd(60)-9.44*cosd(60) //kN (Compression)
//Joint C
FCD=FBC //kN (Tension)
FCE=9.44*cosd(60)+9.44*cosd(60)-8.38 //kN (Compression)
//Joint D
FDE=(30+FCD*sind(60))/sind(60) //kN (Compression)
printf("\nRequired Forces are:-\nFGF=%.2f kN (Tension)\nFGE=%.2f kN (Compression)\nFFE=%.2f kN (Compression)\nFFD=%.2f kN (Tension)\nRE=%.2f kN\nVA=%.2f kN\nHA=%.2f kN\nFAB=%.2f kN (Compression)\nFAC=%.2f (Tension)\nFBC=%.2f kN (Compression)\nFBD=%.2f kN (Compression)\nFCD=%.2f kN (Tension)\nFCE=%.2f kN (Compression)\nFDE=%.2f kN (Compression)",FGF,FGE,FFE,FFD,RE,VA,HA,FAB,FAC,FBC,FBD,FCD,FCE,FDE)
|