//Analyse truss //Refer fig. 4.12 (a) //All triangles are equilateral //applying equilibrium conditions At //Joint G FGF=20/sind(60) //kN (Tension) FGE=FGF*cosd(60) //kN (Compression) //Joint F FFE=FGF //kN (Compression) FFD=FGF*cosd(60)+FFE*cosd(60)-10 //kN (Tension) //Consider eqiulibrium of entire truss RE=(-10*3*sind(60)+40*3*cosd(60)+30*(3+3*cosd(60))+20*9)/6 //kN VA=(40+30+20)-58.17 //kN HA=10 //kN //Joint A FAB=31.83/sind(60) //kN (Compression) FAC=36.75*cosd(60)-10 //kN (Tension) //Joint B FBC=(40-FAB*sind(60))/sind(60) //kN (Compression) FBD=36.75*cosd(60)-9.44*cosd(60) //kN (Compression) //Joint C FCD=FBC //kN (Tension) FCE=9.44*cosd(60)+9.44*cosd(60)-8.38 //kN (Compression) //Joint D FDE=(30+FCD*sind(60))/sind(60) //kN (Compression) printf("\nRequired Forces are:-\nFGF=%.2f kN (Tension)\nFGE=%.2f kN (Compression)\nFFE=%.2f kN (Compression)\nFFD=%.2f kN (Tension)\nRE=%.2f kN\nVA=%.2f kN\nHA=%.2f kN\nFAB=%.2f kN (Compression)\nFAC=%.2f (Tension)\nFBC=%.2f kN (Compression)\nFBD=%.2f kN (Compression)\nFCD=%.2f kN (Tension)\nFCE=%.2f kN (Compression)\nFDE=%.2f kN (Compression)",FGF,FGE,FFE,FFD,RE,VA,HA,FAB,FAC,FBC,FBD,FCD,FCE,FDE)