blob: 976d6f4d99f6d6a8220084098f198fbfe4574cef (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
// Book - Power System: Analysis & Design 5th Edition
// Authors - J. Duncan Glover, Mulukutla S. Sharma, Thomas J. Overbye
// Chapter - 5 : Example 5.6
// Scilab Version 6.0.0 : OS - Windows
clc;
clear;
N = 4; // Number of Conductors
l = 300; // Line lenght in km
s = 1272000; // Size of the conductor in cmil
Vs1 = 765; // Sending end voltage in kV
V = 765; // Base Voltage
Vr1 = 0.95*765; // Receiving end voltage in kV
delta = 35; // Phase angle in degree
Z1 = 97; // Absolute line paramter value in Ohm from Ex 5.5
thetaZ = 87.2; // Angle value of Parameter B in radians from Ex 5.5
A = 0.9313; // Absolute line paramter value in per unit from Ex 5.5
thetaA = 0.209; // Angle value of Parameter A in degree from Ex 5.5
Pr = (((Vr1*Vs1)/Z1)*cosd(thetaZ-delta))-(((A*(Vr1)^2)/Z1)*cosd(thetaZ-thetaA)); // The real power delivered to the receiving end in MW
SIL = 2199; // Surge Impedance Load in MW taken from Ex 5.5
L = 1.49; // Loadability in per unit of SIL taken from fig 5.12
LL = L*SIL; // Practical Line loadability in MW using fig. 5.12
pf = 0.986; // Power factor
IRFL = Pr/(sqrt(3)*Vr1*pf); // Full load receiving end current in kA
A = 0.9313*exp(%i*0.209)*(%pi/180); // Line parameter value in per unit taken from Ex 5.2
B = 97.0*exp(%i*87.20)*(%pi/180); // Line parameter value in Ohm taken from Ex 5
theta = acos(pf);
Irfl = 2.616*exp(%i*theta);
Vs2 = Vs1/sqrt(3); // line Voltage in kV
a = 0.8673; // coefficient of second order Vrfl from the equation in part c
b = -54.24; // coefficient Vrfl from the equation in part c
c = -130707.89; // coefficient constant from the equation in part c
Vrfl = (-b+sqrt((b^2)-(4*a*c)))/(2*a); // Vrfl value from the 2nd order Quadratic equation
Vrfl2 = Vrfl*sqrt(3); // Full load receiving end voltage in kVLL
VRFL = Vrfl2/V; // Full load receiving end in per unit
absA = 0.9313; // Absolute value of A taken from Ex 5.2
VRNL = V/absA; // The receiving end no load voltage in kVLL taken from 5.1.19
PercentVR = ((VRNL-Vrfl2)/Vrfl2)*100; // Full load voltage in percent
J = N*1.2; // Approximate Current carrying capacity of 4 ACSR conductors in kA taken From table A.4
printf('\nPractical line loadability is (LL) = %0.0f MW', Pr);
printf('\nFull load receiving end current is (Irfl) = %0.3f kA', IRFL);
printf('\nFull load receiving end voltage is (VRFL) = %0.3f per unit', VRFL);
printf('\nThe receiving end no load voltage is (VRNL) = %0.1f kVLL', VRNL);
printf('\nFull load voltage is (PercentVR) = %0.2f Percent', PercentVR);
printf('\nApproximate Current carrying capacity of 4 ACSR conductors is (J) = %0.1f kA', J);
|