diff options
Diffstat (limited to '3872/CH5/EX5.6/Ex5_6.sce')
-rw-r--r-- | 3872/CH5/EX5.6/Ex5_6.sce | 52 |
1 files changed, 52 insertions, 0 deletions
diff --git a/3872/CH5/EX5.6/Ex5_6.sce b/3872/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..976d6f4d9 --- /dev/null +++ b/3872/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,52 @@ +// Book - Power System: Analysis & Design 5th Edition
+// Authors - J. Duncan Glover, Mulukutla S. Sharma, Thomas J. Overbye
+// Chapter - 5 : Example 5.6
+// Scilab Version 6.0.0 : OS - Windows
+
+clc;
+clear;
+
+N = 4; // Number of Conductors
+l = 300; // Line lenght in km
+s = 1272000; // Size of the conductor in cmil
+Vs1 = 765; // Sending end voltage in kV
+V = 765; // Base Voltage
+Vr1 = 0.95*765; // Receiving end voltage in kV
+
+delta = 35; // Phase angle in degree
+Z1 = 97; // Absolute line paramter value in Ohm from Ex 5.5
+thetaZ = 87.2; // Angle value of Parameter B in radians from Ex 5.5
+A = 0.9313; // Absolute line paramter value in per unit from Ex 5.5
+thetaA = 0.209; // Angle value of Parameter A in degree from Ex 5.5
+Pr = (((Vr1*Vs1)/Z1)*cosd(thetaZ-delta))-(((A*(Vr1)^2)/Z1)*cosd(thetaZ-thetaA)); // The real power delivered to the receiving end in MW
+SIL = 2199; // Surge Impedance Load in MW taken from Ex 5.5
+L = 1.49; // Loadability in per unit of SIL taken from fig 5.12
+LL = L*SIL; // Practical Line loadability in MW using fig. 5.12
+
+pf = 0.986; // Power factor
+IRFL = Pr/(sqrt(3)*Vr1*pf); // Full load receiving end current in kA
+
+A = 0.9313*exp(%i*0.209)*(%pi/180); // Line parameter value in per unit taken from Ex 5.2
+B = 97.0*exp(%i*87.20)*(%pi/180); // Line parameter value in Ohm taken from Ex 5
+theta = acos(pf);
+Irfl = 2.616*exp(%i*theta);
+Vs2 = Vs1/sqrt(3); // line Voltage in kV
+a = 0.8673; // coefficient of second order Vrfl from the equation in part c
+b = -54.24; // coefficient Vrfl from the equation in part c
+c = -130707.89; // coefficient constant from the equation in part c
+Vrfl = (-b+sqrt((b^2)-(4*a*c)))/(2*a); // Vrfl value from the 2nd order Quadratic equation
+Vrfl2 = Vrfl*sqrt(3); // Full load receiving end voltage in kVLL
+VRFL = Vrfl2/V; // Full load receiving end in per unit
+
+absA = 0.9313; // Absolute value of A taken from Ex 5.2
+VRNL = V/absA; // The receiving end no load voltage in kVLL taken from 5.1.19
+PercentVR = ((VRNL-Vrfl2)/Vrfl2)*100; // Full load voltage in percent
+
+J = N*1.2; // Approximate Current carrying capacity of 4 ACSR conductors in kA taken From table A.4
+
+printf('\nPractical line loadability is (LL) = %0.0f MW', Pr);
+printf('\nFull load receiving end current is (Irfl) = %0.3f kA', IRFL);
+printf('\nFull load receiving end voltage is (VRFL) = %0.3f per unit', VRFL);
+printf('\nThe receiving end no load voltage is (VRNL) = %0.1f kVLL', VRNL);
+printf('\nFull load voltage is (PercentVR) = %0.2f Percent', PercentVR);
+printf('\nApproximate Current carrying capacity of 4 ACSR conductors is (J) = %0.1f kA', J);
|