blob: ef0c21455e71e81fd1337d022061b703c5cc8b5f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
//============================================================================
//Chapter 6 Example 29
clc;
clear all;
//variable declaration
Vs = 63+0*%i; //secondary terminal voltage in V
Zs1 = 2+1*%i; //equivalent mpedance referred to prmary in Ω
Zb = 100+200*%i; //secondary burden in Ω
KN =60.5;
//calculations
KT = 3810/63; //turn ratio
Ep = KT*Vs; //primary induced emf in V
Zp1 = (KT^2)*Zs1; //equivalent impedance
Zs12 = sqrt(((real(Zp1))^2)+((imag(Zp1))^2));
Is = Vs/Zb; //secondary current in A
Is1 = sqrt(((real(Is))^2)+((imag(Is))^2));
Ip = Is/KT; //primary current in A
Ip1 = sqrt(((real(Ip))^2)+((imag(Ip))^2));
Vp = Ep+(Ip*Zp1); //applied voltage to primary in V
Vp1 = sqrt(((real(Vp))^2)+((imag(Vp))^2));
beta = (atan((imag(Vp))/real(Vp)))*180/%pi; //phase angle error in °
e = (((KN*Vs)-Vp)/Vp)*100; //ratio error in percentage
//beta = (atan((imag(Zp1))/real(Zp1)))*180/%pi;
//result
mprintf("phase angle error = %3.2f °",beta);
mprintf("ratio error = %3.1f percentage ",e);
|