//============================================================================ //Chapter 6 Example 29 clc; clear all; //variable declaration Vs = 63+0*%i; //secondary terminal voltage in V Zs1 = 2+1*%i; //equivalent mpedance referred to prmary in Ω Zb = 100+200*%i; //secondary burden in Ω KN =60.5; //calculations KT = 3810/63; //turn ratio Ep = KT*Vs; //primary induced emf in V Zp1 = (KT^2)*Zs1; //equivalent impedance Zs12 = sqrt(((real(Zp1))^2)+((imag(Zp1))^2)); Is = Vs/Zb; //secondary current in A Is1 = sqrt(((real(Is))^2)+((imag(Is))^2)); Ip = Is/KT; //primary current in A Ip1 = sqrt(((real(Ip))^2)+((imag(Ip))^2)); Vp = Ep+(Ip*Zp1); //applied voltage to primary in V Vp1 = sqrt(((real(Vp))^2)+((imag(Vp))^2)); beta = (atan((imag(Vp))/real(Vp)))*180/%pi; //phase angle error in ° e = (((KN*Vs)-Vp)/Vp)*100; //ratio error in percentage //beta = (atan((imag(Zp1))/real(Zp1)))*180/%pi; //result mprintf("phase angle error = %3.2f °",beta); mprintf("ratio error = %3.1f percentage ",e);