blob: c0e3e70d63f7d52c933e929170f55ac3af094529 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
Given State Table
q | x=0 x=1 | z1 z2 z3 z4 z5
--------------------------------
A | D B | 0 0 0 1 1
B | E C | 0 0 1 0 1
C | A B | 1 1 0 0 1
D | E C | 1 1 1 1 1
E | D B | 1 0 0 1 1
Step 1 produces given SP Partitions
P1 = (ADE)(BC)
P2 = (AE)(B)(C)(D)
P3 = (AE)(BC)(D)
P4 = (A)(BD)(C)(E)
P5 = (AE)(BCD)
Step 2 requires three sums
P2 + P4 = (AE)(BD)(C)--> P6
There are six non trivial SP partitions.
For the first output column, None of the SP partitions are output consistent
for the second output column only P2 is output consistent
q | x=0 x=1 | z2
--------------------------------
A | D B | 0
B | A C | 0
C | A B | 1
D | A C | 1
for the third output column only P2, P4 and P6 all are output consistent
q | x=0 x=1 | z3
--------------------------------
A | B B | 0
B | A C | 0
C | A B | 1
for the fourth output column only P1 is output consistent
q | x=0 x=1 | z3
--------------------------------
A | A B | 0
B | A B | 1
for the last output column there is no need to find the SP partitions, The system is combinational. It does not depend on the state z=1
|