Given State Table q | x=0 x=1 | z1 z2 z3 z4 z5 -------------------------------- A | D B | 0 0 0 1 1 B | E C | 0 0 1 0 1 C | A B | 1 1 0 0 1 D | E C | 1 1 1 1 1 E | D B | 1 0 0 1 1 Step 1 produces given SP Partitions P1 = (ADE)(BC) P2 = (AE)(B)(C)(D) P3 = (AE)(BC)(D) P4 = (A)(BD)(C)(E) P5 = (AE)(BCD) Step 2 requires three sums P2 + P4 = (AE)(BD)(C)--> P6 There are six non trivial SP partitions. For the first output column, None of the SP partitions are output consistent for the second output column only P2 is output consistent q | x=0 x=1 | z2 -------------------------------- A | D B | 0 B | A C | 0 C | A B | 1 D | A C | 1 for the third output column only P2, P4 and P6 all are output consistent q | x=0 x=1 | z3 -------------------------------- A | B B | 0 B | A C | 0 C | A B | 1 for the fourth output column only P1 is output consistent q | x=0 x=1 | z3 -------------------------------- A | A B | 0 B | A B | 1 for the last output column there is no need to find the SP partitions, The system is combinational. It does not depend on the state z=1