blob: efcd717c9cf787085df336acaf7a98c1f1c1a2a3 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
// Problem no 2.3,Page no.32
clc;clear;
close;
//Rectangle-1
b_1=12 //cm //width of Rectangle-1
d_1=2 //cm //breadth of Rectangle-1
a_1=24 //cm**2 //Area of Rectangle-1
y_1=1 //cm //Distance of centroid-1
//Rectangle-2
b_2=2 //cm //width of Rectangle-2
d_2=6 //cm //breadthof Rectangle-2
a_2=12 //cm**2 //Area of rectangle-2
y_2=5 //cm //Distance of centroid-2
//Rectangle-3
b_3=5 //cm //width of Rectangle-3
d_3=2 //cm //breadth of Rectangle-3
a_3=10 //cm**2 //Area of rectangle-3
y_3=9 //cm //Distance of centroid-3
//Calculation
Y_bar=((a_1*y_1+a_2*y_2+a_3*y_3)*(a_1+a_2+a_3)**-1) //cm //centre of gravity of section
Y_1=2.78 //cm //Distance of centroid of rectangle 1 to C.G
Y_2=1.22 //cm //Distance of centroid of rectangle 2 to C.G
Y_3=5.22 //cm //Distance of centroid of rectangle 3 to C.G
I_x_x_1=b_1*d_1**3*12**-1+a_1*Y_1**2 //moment of inertia of rectangle 1 about centroidal x-x axis of the section
I_x_x_2=b_2*d_2**3*12**-1+a_2*Y_2**2 //moment of inertia of rectangle 2 about centroidal x-x axis of the section
I_x_x_3=b_3*d_3**3*12**-1+a_3*Y_3**2 //moment of inertia of rectangle 3 about centroidal x-x axis of the section
I_x_x=I_x_x_1+I_x_x_2+I_x_x_3 //cm**4
//Result
printf("Moment of Inertia of the section is %.2f cm^4",I_x_x)
|