// Problem no 2.3,Page no.32 clc;clear; close; //Rectangle-1 b_1=12 //cm //width of Rectangle-1 d_1=2 //cm //breadth of Rectangle-1 a_1=24 //cm**2 //Area of Rectangle-1 y_1=1 //cm //Distance of centroid-1 //Rectangle-2 b_2=2 //cm //width of Rectangle-2 d_2=6 //cm //breadthof Rectangle-2 a_2=12 //cm**2 //Area of rectangle-2 y_2=5 //cm //Distance of centroid-2 //Rectangle-3 b_3=5 //cm //width of Rectangle-3 d_3=2 //cm //breadth of Rectangle-3 a_3=10 //cm**2 //Area of rectangle-3 y_3=9 //cm //Distance of centroid-3 //Calculation Y_bar=((a_1*y_1+a_2*y_2+a_3*y_3)*(a_1+a_2+a_3)**-1) //cm //centre of gravity of section Y_1=2.78 //cm //Distance of centroid of rectangle 1 to C.G Y_2=1.22 //cm //Distance of centroid of rectangle 2 to C.G Y_3=5.22 //cm //Distance of centroid of rectangle 3 to C.G I_x_x_1=b_1*d_1**3*12**-1+a_1*Y_1**2 //moment of inertia of rectangle 1 about centroidal x-x axis of the section I_x_x_2=b_2*d_2**3*12**-1+a_2*Y_2**2 //moment of inertia of rectangle 2 about centroidal x-x axis of the section I_x_x_3=b_3*d_3**3*12**-1+a_3*Y_3**2 //moment of inertia of rectangle 3 about centroidal x-x axis of the section I_x_x=I_x_x_1+I_x_x_2+I_x_x_3 //cm**4 //Result printf("Moment of Inertia of the section is %.2f cm^4",I_x_x)