1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
//Fluid Systems - By Shiv Kumar
//Chapter 16- Hydraulic Power and Its Transmissions
//Example 16.7
//To Determine the Increasse in Pressure.
clc
clear
//Given Data:-
d=800; //Diameter of pipe, mm
Q=0.75; //Discharge, m^3/s
t=10; //Thickness of Pipe, nmnm
Es=20*10^10; //Elastic Modulus of Steel, N/m^2
E=2*10^9; //Elastic Modulus of Water, N/m^2
l=3500; //Lenfth of Pipe, m
T=5; //Time of Valve Closure, s
//Data Used:-
rho=1000; //Density of Water, Kg/m^3
//Computations:-
K=E/(1+(d/t)*(E/Es)); //Combined Modulus of Elasticity, N/m^2
a=sqrt(K/rho); //Velocity of Pressure Wave, m/s
Tc=2*l /a; //Critical time, s
//t<t_c. So, valve closure is rapid.
A=(%pi/4)*(d/1000)^2; //m^2
V=Q/A; //Average Velocity of Flow, m/s
p=rho*V*a/1000; //Pressure Rise, kPa
//Result
printf("The Rise of Pressure=%.2f kPa\n",p) //The answer provided in the textbook is wrong
|