summaryrefslogtreecommitdiff
path: root/3751/CH16/EX16.7/Ex16_7.sce
diff options
context:
space:
mode:
Diffstat (limited to '3751/CH16/EX16.7/Ex16_7.sce')
-rw-r--r--3751/CH16/EX16.7/Ex16_7.sce36
1 files changed, 36 insertions, 0 deletions
diff --git a/3751/CH16/EX16.7/Ex16_7.sce b/3751/CH16/EX16.7/Ex16_7.sce
new file mode 100644
index 000000000..4fb8b3bc0
--- /dev/null
+++ b/3751/CH16/EX16.7/Ex16_7.sce
@@ -0,0 +1,36 @@
+//Fluid Systems - By Shiv Kumar
+//Chapter 16- Hydraulic Power and Its Transmissions
+//Example 16.7
+//To Determine the Increasse in Pressure.
+ clc
+ clear
+
+//Given Data:-
+ d=800; //Diameter of pipe, mm
+ Q=0.75; //Discharge, m^3/s
+ t=10; //Thickness of Pipe, nmnm
+ Es=20*10^10; //Elastic Modulus of Steel, N/m^2
+ E=2*10^9; //Elastic Modulus of Water, N/m^2
+ l=3500; //Lenfth of Pipe, m
+ T=5; //Time of Valve Closure, s
+
+
+//Data Used:-
+ rho=1000; //Density of Water, Kg/m^3
+
+//Computations:-
+ K=E/(1+(d/t)*(E/Es)); //Combined Modulus of Elasticity, N/m^2
+ a=sqrt(K/rho); //Velocity of Pressure Wave, m/s
+ Tc=2*l /a; //Critical time, s
+
+ //t<t_c. So, valve closure is rapid.
+ A=(%pi/4)*(d/1000)^2; //m^2
+ V=Q/A; //Average Velocity of Flow, m/s
+ p=rho*V*a/1000; //Pressure Rise, kPa
+
+
+//Result
+ printf("The Rise of Pressure=%.2f kPa\n",p) //The answer provided in the textbook is wrong
+
+
+