blob: cde5382d0e98fa43756b6bc6b20e19c95d85bbb8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
//Chapter 10:Traction Drives
//Example 6
clc;
//Variable Initialization
Ml=1000 //weight of the empty train in tonne
Mt=5000 //weight of the fully loaded train in tonne
G=15 //gradient of the track
V=30 //maximum speed of the train
r=40 //train resistance in N/tonne
u=0.25 //co-efficient of adhesion
alpha=0.3 //acelaration in kmphps
W=100 //weight of each locomotive
//Solution
Md=W//Md=W*n
Fm=9810*u*Md
//By expanding and clubbing similar terms we get
//(G*9.81*Mt)+(9.81*W*n*G)-((r*Mt)+(r*W*n))
//(G*9.81*Mt)-(r*Mt)+(9.81*W*n*G)-(r*W*n)
Fb1=(9.81*Mt*G)-(r*Mt) //By expanding we get
Fb2=(9.81*W*G)-(r*W)//By expanding we get Mt*r+W*n*r
mprintf("\nFm=%d*n",Fm)
mprintf("\nFb=%d*n+%d",Fb2,Fb1)
mprintf("\nEquating Fb and Fm we get")
n=535750/(245250-10715)
if (n>2) then
n=3
end
mprintf("\nThe number of locomotives is n:%d",n)
Md=W*n
M=Ml+W*n
Ft=277.8*1.1*M*alpha+9.81*M*G+M*r
Fm=9810*0.3*Md
if (Fm>Ft) then
mprintf("\nThe train can be accelarated with %d locomotives",n)
end
|