1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
// Example 9.1
// Computation for ICQ and VCEQ for case(a),o/p voltage Vo, overall gain of amplifier, gain by the transistor, i/p resistance at base, total i/p resistance, overall current gain & o/p resistance for case(b),minimum value of Re2 ofr case(c) and minimum values of capacitors Cb, Cc and Ce for case(d)//
// Page no.366
clc;
clear;
close;
//Given data
R1_A=33*10^3;
R2_A=10*10^3;
VCC=12;
VBEQ=0.7;
hfe_A=100
Re1_A=1*10^3;
Re2_A=470;;
Rc=2.2*10^3;
R1_B=33*10^3;
R2_B=10*10^3;
Rs_B=600;
Rc_B=2.2*10^3;
Re1_B=1*10^3;
Re2_B=0;
RL1_B=47*10^3;
Vs=10*10^-3;
hfe_B=150;
fs_min=2*10^3;
//...................................(A).....................................//
//Calculation for VBB//
VBB=(R2_A*VCC)/(R1_A+R2_A);
//Calculation for Rb//
Rb=(R1_A*R2_A)/(R1_A+R2_A);
//Calculation for collector current//
//for Re2=0:
ICQ1=hfe_A*((VBB-VBEQ)/(Rb+(hfe_A*(Re1_A))));//IBEQ=(VBB-VBEQ)/(Rb+(hfe*(Re1+Re2)))
//for Re2=470 ohm:
ICQ2=hfe_A*((VBB-VBEQ)/(Rb+(hfe_A*(Re1_A+Re2_A))));
//Calculation for quiescent collector to emitter voltage//
//for Re2=0:
VCEQ1=VCC-ICQ1*(Rc+Re1_A);
//for Re2=470 ohm:
VCEQ2=VCC-ICQ2*(Rc+Re1_A+Re2_A);
//Calculation for re_dash//
//when ICQ=1.94mA:
re_dash1=(26*10^-3)/ICQ1;//IEQ=ICQ
//when ICQ=1.35mA:
re_dash2=(26*10^-3)/ICQ2;//for Re2=470 ohm
//...................................(B)....................................//
//Calculation for resistance of the parallel combination of Rc and Rl1//
Rl1c=(Rc_B*RL1_B)/(Rc_B+RL1_B);
Rl2e=0;
//Calculation for Vth//
Vth=((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B))*Vs;
//Calculation for Rth//
Rth=1/((1/Rs_B)+(1/R1_B)+(1/R2_B));
//Calculation for Ib//
Ib=Vth/(Rth+(hfe_B*(re_dash1+Rl2e)));
//Calculation for the output voltage of circuit//
Vo=-Rl1c*hfe_B*Ib;
//Calculation for overall voltage gain of the circuit//
Avs=abs(Vo/Vs);
//Calculation for gain of the transistor//
Av=abs(Rl1c/(re_dash1+Rl2e));
//Calculation for input resistance at the base//
Rin_base=hfe_B*(re_dash1+Rl2e);
//Calculation for total input resistance//
Rin_total=((1/R1_B)+(1/R2_B)+(1/Rin_base))^-1;
//Calculation for overall current gain//
AIs=((hfe_B*(Rs_B+Rin_total))/(Rth+(hfe_B*(re_dash1+Rl2e))))*(((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B)));
//Calculation for output resistance //
Rout=2.2*10^3;//Rout=Rout1=Rc
//...................................(C)....................................//
//Calculation for a//
a=260*10^-3/(hfe_A*(VBB-VBEQ));
//Calculation for minimum value of Re2//
Re2_min=(a/(1-(a*hfe_A)))*(Rb+(hfe_A*Re1_A));
//Calculation for re_dash3//
re_dash3=Re2_min/10;
//Calculation for overall voltage gain of the amplifier//
Avs_dash1=abs((hfe_B/(Rth+hfe_B*(Re2_min+re_dash3)))*4.27*10^3*((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B)));//Rl2e=Re2=Re2_min
//Calculation for overall voltage gain of the amplifier by neglecting re_dash//
Avs_dash2=abs((hfe_B/(Rth+hfe_B*(Re2_min)))*4.27*10^3*((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B)));//Rl2e=Re2=Re2_min
//...................................(D)....................................//
//Calculation for the minimum value Cb_min of the blocking capacitor Cb//
Cb_min=1.59/(fs_min*(Rs_B+Rin_total));
//Calculation for the minimum value Cc_min of the coupling capacitor Cc//
Cc_min=1.59/(fs_min*(Rc+RL1_B));
//Calculation for the minimum value Ce1_min of the bypass capacitor Ce//
Ce1_min=1.59/(fs_min*Re1_A);
//Displaying the result in command window
printf("\n ......................(A)............................");
printf('\n VBB = %0.2f V',VBB);
printf('\n Rb = %0.2f K',Rb*10^-3);
printf('\n For Re2=0, Collector current = %0.2f mA',ICQ1*10^3);
printf('\n For Re2=470 ohm, Collector current = %0.2f mA',ICQ2*10^3);
printf('\n For ICQ=1.94 mA, Quiescent collector to emitter voltage = %0.2f V',VCEQ1);
printf('\n For ICQ=1.35 mA, Quiescent collector to emitter voltage = %0.2f V',VCEQ2);
printf('\n For ICQ=1.94 mA and Re2=0,the value of re_dash= %0.2f K',re_dash1);
printf('\n For ICQ=1.35 mA and Re2=470 ohm,the value of re_dash = %0.2f ohm',re_dash2);
printf("\n \n ......................(B)............................");
printf('\n Resistance of parallel combination of Rc and RL1 = Rl1c = %0.1f K',Rl1c*10^-3);
printf('\n Resistance of parallel combination of Re2 and RL2 = Rl2e = %0.0f ',Rl2e);
printf('\n Vth = %0.2f mV',Vth*10^3);
printf('\n Rth = %0.0f ohm',Rth);
printf('\n ac base current = Ib = %0.2f microA',Ib*10^6);
printf('\n Output voltage of circuit = Vo = %0.2f V',Vo);
printf('\n Overall voltage gain of the circuit = %0.0f ',Avs);
printf('\n Gain of the transistor = %0.0f ',Av);
printf('\n Input resistance at the base = %0.0f K',Rin_base*10^-3);
printf('\n Total input resistance = %0.2f K',Rin_total*10^-3);
printf('\n Overall current gain = %0.0f ',AIs);
printf("\n \n ......................(C)............................");
printf('\n a = %0.4f ',a);
printf('\n Minimum value of Re2 = %0.0f ohm',Re2_min);
printf('\n re_dash = %0.1f ohm',re_dash3);
printf('\n Overall voltage gain of the amplifier = %0.0f ',Avs_dash1);
printf('\n Overall voltage gain of the amplifier by neglecting re_dash = %0.0f ',Avs_dash2);
printf("\n \n ......................(D)............................");
printf('\n The minimum value Cb_min of the blocking capacitor Cb = %0.2f microF',Cb_min*10^6);
printf('\n The minimum value Cc_min of the coupling capacitor Cc = %0.2f nF',Cc_min*10^9);
printf('\n The minimum value Ce1_min of the bypass capacitor Ce = %0.1f microF',Ce1_min*10^6);
//Answers are varying due to round off error//
|