diff options
Diffstat (limited to '3655/CH9/EX9.1/Ex9_1.sce')
-rw-r--r-- | 3655/CH9/EX9.1/Ex9_1.sce | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/3655/CH9/EX9.1/Ex9_1.sce b/3655/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..1f794c6e1 --- /dev/null +++ b/3655/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,154 @@ +// Example 9.1 +// Computation for ICQ and VCEQ for case(a),o/p voltage Vo, overall gain of amplifier, gain by the transistor, i/p resistance at base, total i/p resistance, overall current gain & o/p resistance for case(b),minimum value of Re2 ofr case(c) and minimum values of capacitors Cb, Cc and Ce for case(d)// +// Page no.366 + +clc; +clear; +close; + +//Given data +R1_A=33*10^3; +R2_A=10*10^3; +VCC=12; +VBEQ=0.7; +hfe_A=100 +Re1_A=1*10^3; +Re2_A=470;; +Rc=2.2*10^3; +R1_B=33*10^3; +R2_B=10*10^3; +Rs_B=600; +Rc_B=2.2*10^3; +Re1_B=1*10^3; +Re2_B=0; +RL1_B=47*10^3; +Vs=10*10^-3; +hfe_B=150; +fs_min=2*10^3; + +//...................................(A).....................................// + +//Calculation for VBB// +VBB=(R2_A*VCC)/(R1_A+R2_A); + +//Calculation for Rb// +Rb=(R1_A*R2_A)/(R1_A+R2_A); + +//Calculation for collector current// +//for Re2=0: +ICQ1=hfe_A*((VBB-VBEQ)/(Rb+(hfe_A*(Re1_A))));//IBEQ=(VBB-VBEQ)/(Rb+(hfe*(Re1+Re2))) + +//for Re2=470 ohm: +ICQ2=hfe_A*((VBB-VBEQ)/(Rb+(hfe_A*(Re1_A+Re2_A)))); + +//Calculation for quiescent collector to emitter voltage// +//for Re2=0: +VCEQ1=VCC-ICQ1*(Rc+Re1_A); + +//for Re2=470 ohm: +VCEQ2=VCC-ICQ2*(Rc+Re1_A+Re2_A); + +//Calculation for re_dash// +//when ICQ=1.94mA: +re_dash1=(26*10^-3)/ICQ1;//IEQ=ICQ +//when ICQ=1.35mA: +re_dash2=(26*10^-3)/ICQ2;//for Re2=470 ohm + +//...................................(B)....................................// + +//Calculation for resistance of the parallel combination of Rc and Rl1// +Rl1c=(Rc_B*RL1_B)/(Rc_B+RL1_B); +Rl2e=0; + +//Calculation for Vth// +Vth=((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B))*Vs; + +//Calculation for Rth// +Rth=1/((1/Rs_B)+(1/R1_B)+(1/R2_B)); + +//Calculation for Ib// +Ib=Vth/(Rth+(hfe_B*(re_dash1+Rl2e))); + +//Calculation for the output voltage of circuit// +Vo=-Rl1c*hfe_B*Ib; + +//Calculation for overall voltage gain of the circuit// +Avs=abs(Vo/Vs); + +//Calculation for gain of the transistor// +Av=abs(Rl1c/(re_dash1+Rl2e)); + +//Calculation for input resistance at the base// +Rin_base=hfe_B*(re_dash1+Rl2e); + +//Calculation for total input resistance// +Rin_total=((1/R1_B)+(1/R2_B)+(1/Rin_base))^-1; + +//Calculation for overall current gain// +AIs=((hfe_B*(Rs_B+Rin_total))/(Rth+(hfe_B*(re_dash1+Rl2e))))*(((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B))); + +//Calculation for output resistance // +Rout=2.2*10^3;//Rout=Rout1=Rc + +//...................................(C)....................................// + +//Calculation for a// +a=260*10^-3/(hfe_A*(VBB-VBEQ)); + +//Calculation for minimum value of Re2// +Re2_min=(a/(1-(a*hfe_A)))*(Rb+(hfe_A*Re1_A)); + +//Calculation for re_dash3// +re_dash3=Re2_min/10; + +//Calculation for overall voltage gain of the amplifier// +Avs_dash1=abs((hfe_B/(Rth+hfe_B*(Re2_min+re_dash3)))*4.27*10^3*((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B)));//Rl2e=Re2=Re2_min + +//Calculation for overall voltage gain of the amplifier by neglecting re_dash// +Avs_dash2=abs((hfe_B/(Rth+hfe_B*(Re2_min)))*4.27*10^3*((R1_B*R2_B)/(R1_B+R2_B))/(Rs_B+(R1_B*R2_B)/(R1_B+R2_B)));//Rl2e=Re2=Re2_min + +//...................................(D)....................................// + +//Calculation for the minimum value Cb_min of the blocking capacitor Cb// +Cb_min=1.59/(fs_min*(Rs_B+Rin_total)); + +//Calculation for the minimum value Cc_min of the coupling capacitor Cc// +Cc_min=1.59/(fs_min*(Rc+RL1_B)); + +//Calculation for the minimum value Ce1_min of the bypass capacitor Ce// +Ce1_min=1.59/(fs_min*Re1_A); + +//Displaying the result in command window +printf("\n ......................(A)............................"); +printf('\n VBB = %0.2f V',VBB); +printf('\n Rb = %0.2f K',Rb*10^-3); +printf('\n For Re2=0, Collector current = %0.2f mA',ICQ1*10^3); +printf('\n For Re2=470 ohm, Collector current = %0.2f mA',ICQ2*10^3); +printf('\n For ICQ=1.94 mA, Quiescent collector to emitter voltage = %0.2f V',VCEQ1); +printf('\n For ICQ=1.35 mA, Quiescent collector to emitter voltage = %0.2f V',VCEQ2); +printf('\n For ICQ=1.94 mA and Re2=0,the value of re_dash= %0.2f K',re_dash1); +printf('\n For ICQ=1.35 mA and Re2=470 ohm,the value of re_dash = %0.2f ohm',re_dash2); +printf("\n \n ......................(B)............................"); +printf('\n Resistance of parallel combination of Rc and RL1 = Rl1c = %0.1f K',Rl1c*10^-3); +printf('\n Resistance of parallel combination of Re2 and RL2 = Rl2e = %0.0f ',Rl2e); +printf('\n Vth = %0.2f mV',Vth*10^3); +printf('\n Rth = %0.0f ohm',Rth); +printf('\n ac base current = Ib = %0.2f microA',Ib*10^6); +printf('\n Output voltage of circuit = Vo = %0.2f V',Vo); +printf('\n Overall voltage gain of the circuit = %0.0f ',Avs); +printf('\n Gain of the transistor = %0.0f ',Av); +printf('\n Input resistance at the base = %0.0f K',Rin_base*10^-3); +printf('\n Total input resistance = %0.2f K',Rin_total*10^-3); +printf('\n Overall current gain = %0.0f ',AIs); +printf("\n \n ......................(C)............................"); +printf('\n a = %0.4f ',a); +printf('\n Minimum value of Re2 = %0.0f ohm',Re2_min); +printf('\n re_dash = %0.1f ohm',re_dash3); +printf('\n Overall voltage gain of the amplifier = %0.0f ',Avs_dash1); +printf('\n Overall voltage gain of the amplifier by neglecting re_dash = %0.0f ',Avs_dash2); +printf("\n \n ......................(D)............................"); +printf('\n The minimum value Cb_min of the blocking capacitor Cb = %0.2f microF',Cb_min*10^6); +printf('\n The minimum value Cc_min of the coupling capacitor Cc = %0.2f nF',Cc_min*10^9); +printf('\n The minimum value Ce1_min of the bypass capacitor Ce = %0.1f microF',Ce1_min*10^6); + +//Answers are varying due to round off error// |