1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 5: ELECTRIC TRACTION-SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT
// EXAMPLE : 5.8 :
// Page number 782-783
clear ; clc ; close ; // Clear the work space and console
// Given data
V_a = 42.0 // Average speed of train(kmph)
D = 1400.0/1000 // Distance(km)
alpha = 1.7 // Acceleration(km phps)
beta = 3.3 // Retardation(km phps)
r = 50.0 // Tractive resistance(N/tonne)
I = 10.0 // Rotational inertia(%)
// Calculations
T = D*3600/V_a // Time for run(sec)
k = (alpha+beta)/(alpha*beta) // Constant
V_m = (T/k)-((T/k)**2-(7200*D/k))**0.5 // Maximum speed over the run(kmph)
t_1 = V_m/alpha // Time of acceleration(sec)
t_3 = V_m/beta // Time(sec)
t_2 = T-(t_1+t_3) // Time(sec)
D_1 = D-(V_a*t_1/(2*3600)) // Distance(km)
We_W = (100+I)/100 // W_e/W
energy = (0.0107*V_m**2*We_W/D)+(0.278*r*D_1/D) // Energy consumption(Wh per tonne-km)
a = gca() ;
a.thickness = 2 // sets thickness of plot
plot([0,t_1,t_1,(t_1+t_2),(t_1+t_2),(t_1+t_2+t_3)],[0,V_m,V_m,V_m,V_m,0]) // Plotting speed-time curve
plot([t_1,t_1],[0,V_m],'r--')
plot([t_1+t_2,t_1+t_2],[0,V_m],'r--')
a.x_label.text = 'Time(seconds)' // labels x-axis
a.y_label.text = 'Speed (km/h)' // labels y-axis
xtitle("Fig E5.1 . Speed-time curve for the run")
xset('thickness',2) // sets thickness of axes
// Results
disp("PART IV - EXAMPLE : 5.8 : SOLUTION :-")
printf("\nSpeed-time curve for the run is shown in Figure E5.1")
printf("\nEnergy consumption at the axles of train = %.1f Wh per tonne-km", energy)
|