// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART IV : UTILIZATION AND TRACTION // CHAPTER 5: ELECTRIC TRACTION-SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT // EXAMPLE : 5.8 : // Page number 782-783 clear ; clc ; close ; // Clear the work space and console // Given data V_a = 42.0 // Average speed of train(kmph) D = 1400.0/1000 // Distance(km) alpha = 1.7 // Acceleration(km phps) beta = 3.3 // Retardation(km phps) r = 50.0 // Tractive resistance(N/tonne) I = 10.0 // Rotational inertia(%) // Calculations T = D*3600/V_a // Time for run(sec) k = (alpha+beta)/(alpha*beta) // Constant V_m = (T/k)-((T/k)**2-(7200*D/k))**0.5 // Maximum speed over the run(kmph) t_1 = V_m/alpha // Time of acceleration(sec) t_3 = V_m/beta // Time(sec) t_2 = T-(t_1+t_3) // Time(sec) D_1 = D-(V_a*t_1/(2*3600)) // Distance(km) We_W = (100+I)/100 // W_e/W energy = (0.0107*V_m**2*We_W/D)+(0.278*r*D_1/D) // Energy consumption(Wh per tonne-km) a = gca() ; a.thickness = 2 // sets thickness of plot plot([0,t_1,t_1,(t_1+t_2),(t_1+t_2),(t_1+t_2+t_3)],[0,V_m,V_m,V_m,V_m,0]) // Plotting speed-time curve plot([t_1,t_1],[0,V_m],'r--') plot([t_1+t_2,t_1+t_2],[0,V_m],'r--') a.x_label.text = 'Time(seconds)' // labels x-axis a.y_label.text = 'Speed (km/h)' // labels y-axis xtitle("Fig E5.1 . Speed-time curve for the run") xset('thickness',2) // sets thickness of axes // Results disp("PART IV - EXAMPLE : 5.8 : SOLUTION :-") printf("\nSpeed-time curve for the run is shown in Figure E5.1") printf("\nEnergy consumption at the axles of train = %.1f Wh per tonne-km", energy)