blob: beec4bda6aefdb02786780dbf80d7802f7fe2121 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 10: POWER SYSTEM STABILITY
// EXAMPLE : 10.4 :
// Page number 271
clear ; clc ; close ; // Clear the work space and console
// Given data
V = 400.0 // Voltage(kV)
L = 220.0 // Line length(km)
P = 0.58 // Initial real power transfer(p.u)
PF = 0.85 // Lagging power factor
V_L = 1.00 // Load bus voltage(p.u)
x_d = 0.460 // Reactance(p.u)
x_T1 = 0.200 // Reactance(p.u)
x_T2 = 0.15 // Reactance(p.u)
x_line = 0.7 // Reactance(p.u)
// Calculations
x = x_d+x_T1+x_T2+(x_line/2) // Net reactance(p.u)
phi = acosd(PF) // Φ(°)
Q = P*tand(phi) // Reactive power(p.u)
E = ((V_L+(Q*x/V_L))**2+(P*x/V_L)**2)**0.5 // Excitation voltage of generator(p.u)
P_max = E*V_L/x // Maximum power transfer(p.u)
M = (P_max-P)/P_max*100 // Steady state stability margin(%)
// Results
disp("PART II - EXAMPLE : 10.4 : SOLUTION :-")
printf("\nMaximum power transfer, P_max = %.2f p.u", P_max)
printf("\nStability margin, M = %.f percent", M)
|