// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 10: POWER SYSTEM STABILITY // EXAMPLE : 10.4 : // Page number 271 clear ; clc ; close ; // Clear the work space and console // Given data V = 400.0 // Voltage(kV) L = 220.0 // Line length(km) P = 0.58 // Initial real power transfer(p.u) PF = 0.85 // Lagging power factor V_L = 1.00 // Load bus voltage(p.u) x_d = 0.460 // Reactance(p.u) x_T1 = 0.200 // Reactance(p.u) x_T2 = 0.15 // Reactance(p.u) x_line = 0.7 // Reactance(p.u) // Calculations x = x_d+x_T1+x_T2+(x_line/2) // Net reactance(p.u) phi = acosd(PF) // Φ(°) Q = P*tand(phi) // Reactive power(p.u) E = ((V_L+(Q*x/V_L))**2+(P*x/V_L)**2)**0.5 // Excitation voltage of generator(p.u) P_max = E*V_L/x // Maximum power transfer(p.u) M = (P_max-P)/P_max*100 // Steady state stability margin(%) // Results disp("PART II - EXAMPLE : 10.4 : SOLUTION :-") printf("\nMaximum power transfer, P_max = %.2f p.u", P_max) printf("\nStability margin, M = %.f percent", M)