blob: 03c16aca73d6066c97af3f6368c02846b3e3e85d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 8: CORONA
// EXAMPLE : 8.2 :
// Page number 227-228
clear ; clc ; close ; // Clear the work space and console
// Given data
V = 220.0 // Operating line voltage(kV)
f = 50.0 // Frequency(Hz)
d = 1.5 // Diameter of conductor(cm)
D = 300.0 // Distance b/w conductor(cm)
delta = 1.05 // Air density factor
g_0 = 21.1 // Breakdown strength of air(kV/cm)
m = 1.0 // Irregularity factor
// Calculations
E = V/3**0.5 // Phase voltage(kV)
r = d/2.0 // Radius of conductor(cm)
E_0 = m*g_0*delta*r*log(D/r) // Disruptive critical voltage to neutral(kV/phase)
E_0_ll = 3**0.5*E_0 // Line-to-line Disruptive critical voltage(kV)
P = 244.0*10**-5*(f+25)/delta*(r/D)**0.5*(E-E_0)**2 // Corona loss(kW/km/phase)
P_total = P*3.0 // Corona loss(kW/km)
// Results
disp("PART II - EXAMPLE : 8.2 : SOLUTION :-")
printf("\nCritical disruptive voltage, E_0 = %.2f kV/phase = %.2f kV (line-to-line)", E_0,E_0_ll)
printf("\nCorona loss, P = %.2f kW/km \n", P_total)
printf("\nNOTE: ERROR: Calculation mistake in the final answer in textbook")
|