diff options
Diffstat (limited to '3472/CH15/EX15.2/Example15_2.sce')
-rw-r--r-- | 3472/CH15/EX15.2/Example15_2.sce | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/3472/CH15/EX15.2/Example15_2.sce b/3472/CH15/EX15.2/Example15_2.sce new file mode 100644 index 000000000..03c16aca7 --- /dev/null +++ b/3472/CH15/EX15.2/Example15_2.sce @@ -0,0 +1,34 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 8: CORONA
+
+// EXAMPLE : 8.2 :
+// Page number 227-228
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V = 220.0 // Operating line voltage(kV)
+f = 50.0 // Frequency(Hz)
+d = 1.5 // Diameter of conductor(cm)
+D = 300.0 // Distance b/w conductor(cm)
+delta = 1.05 // Air density factor
+g_0 = 21.1 // Breakdown strength of air(kV/cm)
+m = 1.0 // Irregularity factor
+
+// Calculations
+E = V/3**0.5 // Phase voltage(kV)
+r = d/2.0 // Radius of conductor(cm)
+E_0 = m*g_0*delta*r*log(D/r) // Disruptive critical voltage to neutral(kV/phase)
+E_0_ll = 3**0.5*E_0 // Line-to-line Disruptive critical voltage(kV)
+P = 244.0*10**-5*(f+25)/delta*(r/D)**0.5*(E-E_0)**2 // Corona loss(kW/km/phase)
+P_total = P*3.0 // Corona loss(kW/km)
+
+// Results
+disp("PART II - EXAMPLE : 8.2 : SOLUTION :-")
+printf("\nCritical disruptive voltage, E_0 = %.2f kV/phase = %.2f kV (line-to-line)", E_0,E_0_ll)
+printf("\nCorona loss, P = %.2f kW/km \n", P_total)
+printf("\nNOTE: ERROR: Calculation mistake in the final answer in textbook")
|