blob: b1dfecf7d5b6ebfcbb3e796d2a6e8238e7d85afd (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.15 :
// Page number 145
clear ; clc ; close ; // Clear the work space and console
// Given data
f = 50.0 // Frequency(Hz)
L = 200.0 // Line length(km)
l = 1.20*10**-3 // Inductance(H/km)
c = 8.0*10**-9 // Capacitance(F/km)
r = 0.15 // Resistance(ohm/km)
g = 0.0 // Conductance(mho/km)
// Calculations
z = r+%i*2*%pi*f*l // Total impedance(ohm/km)
Z = z*L // Total impedance(ohm)
y = g+%i*2*%pi*f*c // Total susceptance(mho/km)
Y = y*L // Total susceptance(mho/km)
gamma_l = (Z*Y)**0.5 // γl
alpha_l = real(gamma_l) // αl
beta_l = imag(gamma_l) // βl
Z_c = (Z/Y)**0.5 // Surge impedance(ohm)
A = cosh(gamma_l) // Constant
B = Z_c*sinh(gamma_l) // Constant(ohm)
C = (1/Z_c)*sinh(gamma_l) // Constant(S)
D = A // Constant
// Results
disp("PART II - EXAMPLE : 3.15 : SOLUTION :-")
printf("\nA = D = %.3f∠%.2f° ", abs(A),phasemag(A))
printf("\nB = %.2f∠%.3f° Ω", abs(B),phasemag(B))
printf("\nC = %.2e∠%.3f° S", abs(C),phasemag(C))
|