blob: 590f1de8c7388b4d95d90e3e65c05424915e884b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.12 :
// Page number 143
clear ; clc ; close ; // Clear the work space and console
// Given data
E_s = 275.0 // Sending end voltage(kV)
f = 50.0 // Frequency(Hz)
l = 400.0 // Line length(km)
x = 0.05 // Inductive reactance(ohm/km)
y = 3.0*10**-6 // Line charging susceptance(S/km)
r = 0.0 // Lossless line
// Calculations
// Case(a)
R = r*l // Total resistance(ohm/phase)
X = x*l // Inductive reactance(ohm/phase)
Y = y*l // Susceptance(mho)
Z = complex(R,X) // Total impedance(ohm/phase)
A = 1+(Y*Z/2)*%i // Line constant
E_r = E_s/abs(A) // Receiving end voltage at no load(kV)
// case(b)
Z_0 = (X/Y)**0.5 // Load at receiving end(ohm)
// Case(c)
Z_0_new = 1.2*Z_0 // New load at receiving station(ohm)
// Results
disp("PART II - EXAMPLE : 3.12 : SOLUTION :-")
printf("\nCase(a): Receiving end voltage on open circuit = %.1f kV", E_r)
printf("\nCase(b): Load at receiving end for flat voltage profile on line, Z_0 = %.1f Ω", Z_0)
printf("\nCase(c): Distributed inductive reactance of the line is to be increased as, Loading for new voltage profile = %.2f Ω", Z_0_new)
|