// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.12 : // Page number 143 clear ; clc ; close ; // Clear the work space and console // Given data E_s = 275.0 // Sending end voltage(kV) f = 50.0 // Frequency(Hz) l = 400.0 // Line length(km) x = 0.05 // Inductive reactance(ohm/km) y = 3.0*10**-6 // Line charging susceptance(S/km) r = 0.0 // Lossless line // Calculations // Case(a) R = r*l // Total resistance(ohm/phase) X = x*l // Inductive reactance(ohm/phase) Y = y*l // Susceptance(mho) Z = complex(R,X) // Total impedance(ohm/phase) A = 1+(Y*Z/2)*%i // Line constant E_r = E_s/abs(A) // Receiving end voltage at no load(kV) // case(b) Z_0 = (X/Y)**0.5 // Load at receiving end(ohm) // Case(c) Z_0_new = 1.2*Z_0 // New load at receiving station(ohm) // Results disp("PART II - EXAMPLE : 3.12 : SOLUTION :-") printf("\nCase(a): Receiving end voltage on open circuit = %.1f kV", E_r) printf("\nCase(b): Load at receiving end for flat voltage profile on line, Z_0 = %.1f Ω", Z_0) printf("\nCase(c): Distributed inductive reactance of the line is to be increased as, Loading for new voltage profile = %.2f Ω", Z_0_new)