blob: fce81b1c6f699faf74fef7c539bbbaa9b686cec2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.10 :
// Page number 135
clear ; clc ; close ; // Clear the work space and console
// Given data
f = 50.0 // Frequency(Hz)
l = 125.0 // Line length(km)
P_r = 40.0*10**6 // Load at receiving end(VA)
V_r = 110.0*10**3 // Line voltage at receiving end(V)
PF_r = 0.8 // Lagging load power factor
R = 11.0 // Resistance(ohm/phase)
X = 38.0 // Inductive reactance(ohm/phase)
Y = 3.0*10**-4 // Capacitive susceptance(S)
// Calculations
// Case(i)
E_r = V_r/3**0.5 // Receiving end phase voltage(V)
Z = complex(R,X) // Total impedance(ohm/phase)
I_c1 = E_r*(Y/2)*exp(%i*90.0*%pi/180) // Current through shunt admittance at receiving end(A)
I_r = P_r/(3**0.5*V_r)*exp(%i*-acos(PF_r)) // Load current(A)
I = I_r+I_c1 // Current through series impedance(A)
E_s = I*Z+E_r // Voltage across shunt admittance at sending end(V)
E_s_ll = 3**0.5*E_s/1000.0 // Line to line voltage at sending end(kV)
I_c2 = E_s*(Y/2)*exp(%i*90.0*%pi/180) // Current through shunt admittance at sending end(A)
// Case(ii)
I_s = I_c2+I_r // Sending end current(A)
angle_Er_Es = phasemag(E_s) // Angle between E_r and E_s(°)
angle_Er_Is = phasemag(I_s) // Angle between E_r and I_s(°)
angle_Es_Is = angle_Er_Es-angle_Er_Is // Angle between E_s and I_s(°)
PF_s = cosd(angle_Es_Is) // Sending end power factor
// Results
disp("PART II - EXAMPLE : 3.10 : SOLUTION :-")
printf("\nCase(i) : Line to line voltage at sending end, E_s = %.f kV", abs(E_s_ll))
printf("\nCase(ii): Sending end power factor = %.3f \n", PF_s)
printf("\nNOTE: Answers in the textbook are incomplete")
|