blob: 2548e666ed6499d32c8fc41b4660f8de3a5b314c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.1 :
// Page number 127-128
clear ; clc ; close ; // Clear the work space and console
// Given data
P = 2.0*10**6 // Power delivered(W)
V_r = 33.0*10**3 // Receiving end voltage(V)
PF_r = 0.8 // Receiving end lagging power factor
R = 10.0 // Total resistance of the line(ohm)
X = 18.0 // Total inductive resistance of the line(ohm)
// Calculations
// Case(i)
I = P/(V_r*PF_r) // Line current(A)
sin_phi_r = (1-PF_r**2)**0.5 // Sinφ_R
V_s = V_r+I*R*PF_r+I*X*sin_phi_r // Sending end voltage(V)
reg = (V_s-V_r)/V_r*100 // Voltage regulation(%)
// Case(ii)
PF_s = (V_r*PF_r+I*R)/V_s // Sending end lagging power factor
// Case(iii)
loss = I**2*R // Losses(W)
P_s = P+loss // Sending end power(W)
n = P/P_s*100 // Transmission efficiency(%)
// Results
disp("PART II - EXAMPLE : 3.1 : SOLUTION :-")
printf("\nCase(i) : Percentage voltage regulation = %.3f percent", reg)
printf("\nCase(ii) : Sending end power factor = %.2f (lag)", PF_s)
printf("\nCase(iii): Transmission efficiency, η = %.2f percent \n", n)
printf("\nNOTE: ERROR: pf is 0.8 and not 0.9 as mentioned in the textbook problem statement")
|