1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
//Ex5_3
// Illustration of Order Statistic filter
//To impliment the Following Order Statistic Restoration filter
// (I)Median (II)MAX (III)MIN (IV)Mid Point (V)Alpha trimmed.
// Version : Scilab 5.4.1
// Operating System : Window-xp, Window-7
//Toolbox: Image Processing Design 8.3.1-1
//Toolbox: SIVP 0.5.3.1-2
//Reference book name : Digital Image Processing
//book author: Rafael C. Gonzalez and Richard E. Woods
clc;
close;
clear;
xdel(winsid())//to close all currently open figure(s).
function [f]=arithmetic_mean(v,m,n)
w=fspecial('average',m);
f=imfilter(v,w);
endfunction
function [f]=geometric_mean1(g,m,n);//gmean1() is used to filter an image using Geometric mean filter
size1=m;
q=m*n;
g=double(g);
[nr,nc]=size(g);
temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=g(1:$,1:$)
temp=temp+1;
for i=ceil(size1/2):nr+ceil(size1/2)-1
for j=ceil(size1/2):nc+ceil(size1/2)-1
t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
temp2(i,j)=prod(t);
end
end
temp3=temp2.^(1/q);
nn=temp3(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)
f1=nn-1;
f=mat2gray(f1)
endfunction
function [f]=restoration_filter(v,type,m,n,Q,d)
if argn(2) ==2 then
m=7;n=7;Q=1.5;d=10;
elseif argn(2)==5 then
Q=parameter;d=parameter;
elseif argn(2)==4 then
Q=1.5;d=2;
else
disp('wrong number of inputs');
end
select type
case'median'then
f=MedianFilter(v,[m n]);
case'MIN'then
size1=m;
[nr,nc]=size(v);
temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=v(1:$,1:$);
for i=ceil(size1/2):nr+ceil(size1/2)-1
for j=ceil(size1/2):nc+ceil(size1/2)-1
t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
y=gsort(t);
temp2(i-floor(size1/2),j-floor(size1/2))=min(y);
end
end
f=mat2gray(temp2);
case'MAX'then
size1=m;
[nr,nc]=size(v);
temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=v(1:$,1:$);
for i=ceil(size1/2):nr+ceil(size1/2)-1
for j=ceil(size1/2):nc+ceil(size1/2)-1
t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
y=gsort(t);
temp2(i-floor(size1/2),j-floor(size1/2))=max(y);
end
end
f=mat2gray(temp2);
case'Mid_Point'then
size1=m;
[nr,nc]=size(v);
temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=v(1:$,1:$);
for i=ceil(size1/2):nr+ceil(size1/2)-1
for j=ceil(size1/2):nc+ceil(size1/2)-1
t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
y=gsort(t);
temp2(i-floor(size1/2),j-floor(size1/2))=0.5*(min(y)+max(y));
end
end
f=mat2gray(temp2);
else
disp('Unknownfiltertype.')
end
endfunction
function [f]=alphatrim(g,m,n,d)//alphatrim()is used to filter an image using alpha-trimmed mean filter
size1=m;
[nr,nc]=size(g);
temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=g(1:$,1:$)
for i=ceil(size1/2):nr+ceil(size1/2)-1
for j=ceil(size1/2):nc+ceil(size1/2)-1
t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2))
y=gsort(t);
a=y(:)
b=a';
t1=b(1+d/2:$-d/2);
temp2(i-floor(size1/2),j-floor(size1/2))=mean(t1);
end
end
f=mat2gray(temp2)
endfunction
///////////////////////////////////// Main Programm ////////////////////
gray=imread("Ex5_3.tif");
//gray=rgb2gray(a);
//gray=im2double(gray);
figure,ShowImage(gray,'Gray Image');
title('Original Image');
[M,N]=size(gray);
/////////////////////////////////// Median Filter ////////////////////
v=imnoise(gray,'salt & pepper',0.1);
figure,ShowImage(v,'Noisy Image');
title('Original Image with Salt & Pepper Noise');
//Filtering the corrupted image with median filter
h=restoration_filter(v,'median',3,3);
figure,ShowImage(h,'Recovered Image');
title('Recovered Image with Median Filter');
//Filtering the corrupted image with median filter
h1=restoration_filter(h,'median',3,3);
figure,ShowImage(h1,'Recovered Image');
title('Recovered Image with Median Filter');
//Filtering the corrupted image with median filter
h2=restoration_filter(h1,'median',3,3);
figure,ShowImage(h2,'Recovered Image');
title('Recovered Image with Median Filter');
/////////////////////////////////// MAX Filter ////////////////////
temp(1:M,1:N)=0.5;
r3=imnoise(temp,'salt & pepper',0.1); // Generate salt & pepper Noise
gray_noise_pepper=gray; // Add Pepper Noise Only
[r c]=find(r3==0);
for i=1:length(r)
gray_noise_pepper(r(i),c(i)) = 0;
end
figure,ShowImage(gray_noise_pepper,'Noisy Image');
title('Noisy Image with Pepper Noise');
//Filtering the Salt Noise corrupted image with MAX filter
h=restoration_filter(gray_noise_pepper,'MAX',3,3);
figure,ShowImage(h,'Recovered Image');
title('Recovered Image with MAX Filter');
//////////////////////////////////// MIN Filter ////////////////////
temp(1:M,1:N)=0.5;
r3=imnoise(temp,'salt & pepper',0.1); // Generate salt & pepper Noise
gray_noise_salt=gray; // Add salt Noise Only
[r c]=find(r3==1);
for i=1:length(r)
gray_noise_salt(r(i),c(i)) = 255;
end
figure,ShowImage(gray_noise_salt,'Noisy Image');
title('Noisy Image');
//Filtering the Salt Noise corrupted image with MIN filter
h=restoration_filter(gray_noise_salt,'MIN',3,3);
figure,ShowImage(h,'Recovered Image');
title('Recovered Image with MIN Filter');
///////////////////////////////////// Mid-Point Filter ////////////////////
//v=imnoise(gray,'gaussian',0,0.02);
//figure,ShowImage(v,'Noisy Image');
//title('Image with Gaussian Noise');
////Filtering the Salt Noise corrupted image with Mid-Point filter
//h=restoration_filter(v,'Mid_Point',3,3);
//figure,ShowImage(h,'Recovered Image');
//title('Recovered Image with Mid_Point Filter');
///////////////////////////////// Alpha Trimmed Filter ////////////////////
v=imnoise(gray,'gaussian',0,0.02);
v=imnoise(v,'salt & pepper',0.05);
figure,ShowImage(v,'Noisy Image');
title('Image with Gaussian and Salt&Pepper Noise');
m=5;n=5;d=5;
[f]=arithmetic_mean(v,m,n); // Filtering with Arithmetical mean
figure,ShowImage(f,'Recovered Image');
title('Recovered Image with Arithmetical Mean Filter');
[f]=geometric_mean1(v,m,n); // Filtering with Geometric mean
figure,ShowImage(f,'Recovered Image');
title('Recovered Image with Geometric Mean Filter');
//Filtering the corrupted image with median filter
h=restoration_filter(v,'median',5,5); // Filtering with median Filtering
figure,ShowImage(h,'Recovered Image');
title('Recovered Image with Median Filter');
f=alphatrim(v,m,n,d); // Filtering with alphatrim Filtering
figure,ShowImage(f,'Recovered Image');
title('Recovered Image with Alpha Trimmed Filter');
|