summaryrefslogtreecommitdiff
path: root/3176/CH5/EX5.3/Ex5_3.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /3176/CH5/EX5.3/Ex5_3.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '3176/CH5/EX5.3/Ex5_3.sce')
-rw-r--r--3176/CH5/EX5.3/Ex5_3.sce216
1 files changed, 216 insertions, 0 deletions
diff --git a/3176/CH5/EX5.3/Ex5_3.sce b/3176/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..6d8c27f00
--- /dev/null
+++ b/3176/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,216 @@
+//Ex5_3
+// Illustration of Order Statistic filter
+//To impliment the Following Order Statistic Restoration filter
+// (I)Median (II)MAX (III)MIN (IV)Mid Point (V)Alpha trimmed.
+
+// Version : Scilab 5.4.1
+// Operating System : Window-xp, Window-7
+//Toolbox: Image Processing Design 8.3.1-1
+//Toolbox: SIVP 0.5.3.1-2
+//Reference book name : Digital Image Processing
+//book author: Rafael C. Gonzalez and Richard E. Woods
+
+clc;
+close;
+clear;
+xdel(winsid())//to close all currently open figure(s).
+
+function [f]=arithmetic_mean(v,m,n)
+ w=fspecial('average',m);
+ f=imfilter(v,w);
+endfunction
+
+function [f]=geometric_mean1(g,m,n);//gmean1() is used to filter an image using Geometric mean filter
+ size1=m;
+ q=m*n;
+ g=double(g);
+ [nr,nc]=size(g);
+ temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
+ temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=g(1:$,1:$)
+ temp=temp+1;
+ for i=ceil(size1/2):nr+ceil(size1/2)-1
+ for j=ceil(size1/2):nc+ceil(size1/2)-1
+ t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
+ temp2(i,j)=prod(t);
+ end
+ end
+ temp3=temp2.^(1/q);
+ nn=temp3(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)
+ f1=nn-1;
+ f=mat2gray(f1)
+endfunction
+
+function [f]=restoration_filter(v,type,m,n,Q,d)
+ if argn(2) ==2 then
+ m=7;n=7;Q=1.5;d=10;
+ elseif argn(2)==5 then
+ Q=parameter;d=parameter;
+ elseif argn(2)==4 then
+ Q=1.5;d=2;
+ else
+ disp('wrong number of inputs');
+ end
+
+ select type
+
+ case'median'then
+ f=MedianFilter(v,[m n]);
+
+ case'MIN'then
+ size1=m;
+ [nr,nc]=size(v);
+ temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
+ temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=v(1:$,1:$);
+ for i=ceil(size1/2):nr+ceil(size1/2)-1
+ for j=ceil(size1/2):nc+ceil(size1/2)-1
+ t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
+ y=gsort(t);
+ temp2(i-floor(size1/2),j-floor(size1/2))=min(y);
+ end
+ end
+ f=mat2gray(temp2);
+
+ case'MAX'then
+ size1=m;
+ [nr,nc]=size(v);
+ temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
+ temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=v(1:$,1:$);
+ for i=ceil(size1/2):nr+ceil(size1/2)-1
+ for j=ceil(size1/2):nc+ceil(size1/2)-1
+ t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
+ y=gsort(t);
+ temp2(i-floor(size1/2),j-floor(size1/2))=max(y);
+ end
+ end
+ f=mat2gray(temp2);
+
+ case'Mid_Point'then
+ size1=m;
+ [nr,nc]=size(v);
+ temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
+ temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=v(1:$,1:$);
+ for i=ceil(size1/2):nr+ceil(size1/2)-1
+ for j=ceil(size1/2):nc+ceil(size1/2)-1
+ t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2)) ;
+ y=gsort(t);
+ temp2(i-floor(size1/2),j-floor(size1/2))=0.5*(min(y)+max(y));
+ end
+ end
+ f=mat2gray(temp2);
+
+ else
+ disp('Unknownfiltertype.')
+ end
+endfunction
+
+function [f]=alphatrim(g,m,n,d)//alphatrim()is used to filter an image using alpha-trimmed mean filter
+ size1=m;
+ [nr,nc]=size(g);
+ temp=zeros(nr+2*floor(size1/2),nc+2*floor(size1/2));
+ temp(ceil(size1/2):nr+ceil(size1/2)-1,ceil(size1/2):nc+ceil(size1/2)-1)=g(1:$,1:$)
+
+ for i=ceil(size1/2):nr+ceil(size1/2)-1
+ for j=ceil(size1/2):nc+ceil(size1/2)-1
+ t=temp(i-floor(size1/2):1:i+floor(size1/2),j-floor(size1/2):1:j+floor(size1/2))
+ y=gsort(t);
+ a=y(:)
+ b=a';
+ t1=b(1+d/2:$-d/2);
+ temp2(i-floor(size1/2),j-floor(size1/2))=mean(t1);
+ end
+ end
+ f=mat2gray(temp2)
+endfunction
+
+
+///////////////////////////////////// Main Programm ////////////////////
+
+gray=imread("Ex5_3.tif");
+//gray=rgb2gray(a);
+//gray=im2double(gray);
+figure,ShowImage(gray,'Gray Image');
+title('Original Image');
+[M,N]=size(gray);
+
+/////////////////////////////////// Median Filter ////////////////////
+v=imnoise(gray,'salt & pepper',0.1);
+figure,ShowImage(v,'Noisy Image');
+title('Original Image with Salt & Pepper Noise');
+//Filtering the corrupted image with median filter
+h=restoration_filter(v,'median',3,3);
+figure,ShowImage(h,'Recovered Image');
+title('Recovered Image with Median Filter');
+//Filtering the corrupted image with median filter
+h1=restoration_filter(h,'median',3,3);
+figure,ShowImage(h1,'Recovered Image');
+title('Recovered Image with Median Filter');
+//Filtering the corrupted image with median filter
+h2=restoration_filter(h1,'median',3,3);
+figure,ShowImage(h2,'Recovered Image');
+title('Recovered Image with Median Filter');
+
+
+/////////////////////////////////// MAX Filter ////////////////////
+temp(1:M,1:N)=0.5;
+r3=imnoise(temp,'salt & pepper',0.1); // Generate salt & pepper Noise
+gray_noise_pepper=gray; // Add Pepper Noise Only
+[r c]=find(r3==0);
+ for i=1:length(r)
+ gray_noise_pepper(r(i),c(i)) = 0;
+ end
+figure,ShowImage(gray_noise_pepper,'Noisy Image');
+title('Noisy Image with Pepper Noise');
+
+//Filtering the Salt Noise corrupted image with MAX filter
+h=restoration_filter(gray_noise_pepper,'MAX',3,3);
+figure,ShowImage(h,'Recovered Image');
+title('Recovered Image with MAX Filter');
+
+
+//////////////////////////////////// MIN Filter ////////////////////
+temp(1:M,1:N)=0.5;
+r3=imnoise(temp,'salt & pepper',0.1); // Generate salt & pepper Noise
+gray_noise_salt=gray; // Add salt Noise Only
+[r c]=find(r3==1);
+ for i=1:length(r)
+ gray_noise_salt(r(i),c(i)) = 255;
+ end
+figure,ShowImage(gray_noise_salt,'Noisy Image');
+title('Noisy Image');
+
+//Filtering the Salt Noise corrupted image with MIN filter
+h=restoration_filter(gray_noise_salt,'MIN',3,3);
+figure,ShowImage(h,'Recovered Image');
+title('Recovered Image with MIN Filter');
+
+
+///////////////////////////////////// Mid-Point Filter ////////////////////
+//v=imnoise(gray,'gaussian',0,0.02);
+//figure,ShowImage(v,'Noisy Image');
+//title('Image with Gaussian Noise');
+////Filtering the Salt Noise corrupted image with Mid-Point filter
+//h=restoration_filter(v,'Mid_Point',3,3);
+//figure,ShowImage(h,'Recovered Image');
+//title('Recovered Image with Mid_Point Filter');
+
+
+///////////////////////////////// Alpha Trimmed Filter ////////////////////
+v=imnoise(gray,'gaussian',0,0.02);
+v=imnoise(v,'salt & pepper',0.05);
+figure,ShowImage(v,'Noisy Image');
+title('Image with Gaussian and Salt&Pepper Noise');
+m=5;n=5;d=5;
+[f]=arithmetic_mean(v,m,n); // Filtering with Arithmetical mean
+figure,ShowImage(f,'Recovered Image');
+title('Recovered Image with Arithmetical Mean Filter');
+[f]=geometric_mean1(v,m,n); // Filtering with Geometric mean
+figure,ShowImage(f,'Recovered Image');
+title('Recovered Image with Geometric Mean Filter');
+//Filtering the corrupted image with median filter
+h=restoration_filter(v,'median',5,5); // Filtering with median Filtering
+figure,ShowImage(h,'Recovered Image');
+title('Recovered Image with Median Filter');
+f=alphatrim(v,m,n,d); // Filtering with alphatrim Filtering
+figure,ShowImage(f,'Recovered Image');
+title('Recovered Image with Alpha Trimmed Filter');
+