blob: 86526cbb25e9d5514ababd6361304c4ced05364f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
// scilab Code Exa 11.2 Calculation on an axial compressor stage
T1=314; // in Kelvin
p1=768; // Initial Pressure in mm Hg
N=18e3; // rotor Speed in RPM
d=50/100; // Mean Blade ring diameter in m
u=100; // peripheral speed in m/s
h=6/100; // blade height at entry in m
beta1=51;
beta2=9;
alpha_1=7; // air angle at rotor and stator exit
wdf=0.95; // work-done factor
m=25; // in kg/s
n_st=0.88; // Stage Efficiency
n_m=0.92; // Mechanical Efficiency
cp=1005; // Specific Heat at Constant Pressure in J/(kgK)
R=287;
gamma=1.4;
n=(gamma-1)/gamma;
// part(a) air angle at stator entry
cx=u/(tand(alpha_1)+tand(beta1));
disp(cx,"cx=")
alpha2=atand(tand(alpha_1)+tand(beta1)-tand(beta2))
disp("degree",alpha2,"air angle at stator entry is alpha2= ")
// part(b) blade height at entry and hub-tip diameter ratio
ro1=(p1/750*1e5)/(R*T1);
h1=m/(ro1*cx*%pi*d);
disp("cm",h1*1e2,"(b)blade height at entry is")
dh=d-h1;
disp(dh,"dh=")
dt=d+h1;
disp(dt,"dt=")
disp(dh/dt,"and hub-tip diameter ratio is")
// part(c) stage Loading coefficient
w=wdf*u*cx*(tand(beta1)-tand(beta2));
shi=w/(u^2);
disp (shi,"(d)Loading coefficient is")
// part(d) stage pressure ratio
delTa=w/cp;
delTs=n_st*delTa;
pr=((1+(delTs/T1))^(1/n));
disp(pr,"(e)pressure ratio developed by the stage is")
// part(e) Determining power required to drive the compressor
P=m*w/n_m;
disp ("kW" ,P/1000,"(e)Power required to drive the compressor is")
|