// scilab Code Exa 11.2 Calculation on an axial compressor stage T1=314; // in Kelvin p1=768; // Initial Pressure in mm Hg N=18e3; // rotor Speed in RPM d=50/100; // Mean Blade ring diameter in m u=100; // peripheral speed in m/s h=6/100; // blade height at entry in m beta1=51; beta2=9; alpha_1=7; // air angle at rotor and stator exit wdf=0.95; // work-done factor m=25; // in kg/s n_st=0.88; // Stage Efficiency n_m=0.92; // Mechanical Efficiency cp=1005; // Specific Heat at Constant Pressure in J/(kgK) R=287; gamma=1.4; n=(gamma-1)/gamma; // part(a) air angle at stator entry cx=u/(tand(alpha_1)+tand(beta1)); disp(cx,"cx=") alpha2=atand(tand(alpha_1)+tand(beta1)-tand(beta2)) disp("degree",alpha2,"air angle at stator entry is alpha2= ") // part(b) blade height at entry and hub-tip diameter ratio ro1=(p1/750*1e5)/(R*T1); h1=m/(ro1*cx*%pi*d); disp("cm",h1*1e2,"(b)blade height at entry is") dh=d-h1; disp(dh,"dh=") dt=d+h1; disp(dt,"dt=") disp(dh/dt,"and hub-tip diameter ratio is") // part(c) stage Loading coefficient w=wdf*u*cx*(tand(beta1)-tand(beta2)); shi=w/(u^2); disp (shi,"(d)Loading coefficient is") // part(d) stage pressure ratio delTa=w/cp; delTs=n_st*delTa; pr=((1+(delTs/T1))^(1/n)); disp(pr,"(e)pressure ratio developed by the stage is") // part(e) Determining power required to drive the compressor P=m*w/n_m; disp ("kW" ,P/1000,"(e)Power required to drive the compressor is")