blob: b4036adc655f408e3a65cd6c9a2471d0a79b55da (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
clc;
clear;
//Example 3.44
rho_l=957.9 //[kg/m^3]
lambda=2257 //[kJ/kg]
lambda=lambda*10^3 //[J/kg]
rho_v=31.54 //[kg/m^3]
Cpv=4.64 //[kJ/kg.K]
Cpv=Cpv*10^3 //[J/kg.K]
kv=58.3*10^-3//[W/(m.K)]
g=9.81 //[m/s^2]
mu_v=18.6*10^-6 //[kg/(m.s)]
e=1.0 //Emissivity
sigma=5.67*10^-8;
Ts=373 //[K]
Tw=628 //[K]
dT=Tw-Ts //[K]
D=1.6*10^-3 //[m]
T=(Tw+Ts)/2 //[K]
hc=0.62*((kv^3)*rho_v*(rho_l-rho_v)*g*(lambda+0.40*Cpv*dT)/(D*mu_v*dT))^(1.0/4.0)//Convective heat transfer coeff [W/sq m.K]
hr=e*sigma*(Tw^4-Ts^4)/(Tw-Ts) //Radiation heat transfer coeff in [W/sq m.K]
h=hc+(3/4)*hr //Total heat transfer coefficient W/(sq m.K)
Q_by_l=h*%pi*D*dT //Heat dissipation rate per unit length in [kW/m]
printf("\n Stable film boiling point heat transfer coefficient is %f W/(sq m.K)",h);
Q_by_l=Q_by_l/1000 //[kW/m]
printf("\n Heat dissipated per unit length of the heater is %f kW/m",Q_by_l);
|