clc; clear; //Example 3.44 rho_l=957.9 //[kg/m^3] lambda=2257 //[kJ/kg] lambda=lambda*10^3 //[J/kg] rho_v=31.54 //[kg/m^3] Cpv=4.64 //[kJ/kg.K] Cpv=Cpv*10^3 //[J/kg.K] kv=58.3*10^-3//[W/(m.K)] g=9.81 //[m/s^2] mu_v=18.6*10^-6 //[kg/(m.s)] e=1.0 //Emissivity sigma=5.67*10^-8; Ts=373 //[K] Tw=628 //[K] dT=Tw-Ts //[K] D=1.6*10^-3 //[m] T=(Tw+Ts)/2 //[K] hc=0.62*((kv^3)*rho_v*(rho_l-rho_v)*g*(lambda+0.40*Cpv*dT)/(D*mu_v*dT))^(1.0/4.0)//Convective heat transfer coeff [W/sq m.K] hr=e*sigma*(Tw^4-Ts^4)/(Tw-Ts) //Radiation heat transfer coeff in [W/sq m.K] h=hc+(3/4)*hr //Total heat transfer coefficient W/(sq m.K) Q_by_l=h*%pi*D*dT //Heat dissipation rate per unit length in [kW/m] printf("\n Stable film boiling point heat transfer coefficient is %f W/(sq m.K)",h); Q_by_l=Q_by_l/1000 //[kW/m] printf("\n Heat dissipated per unit length of the heater is %f kW/m",Q_by_l);