summaryrefslogtreecommitdiff
path: root/914/CH14/EX14.2
diff options
context:
space:
mode:
Diffstat (limited to '914/CH14/EX14.2')
-rwxr-xr-x914/CH14/EX14.2/ex14_2.sce40
1 files changed, 40 insertions, 0 deletions
diff --git a/914/CH14/EX14.2/ex14_2.sce b/914/CH14/EX14.2/ex14_2.sce
new file mode 100755
index 000000000..a97e070ef
--- /dev/null
+++ b/914/CH14/EX14.2/ex14_2.sce
@@ -0,0 +1,40 @@
+clc;
+warning("off");
+printf("\n\n example14.2.sce - pg726");
+T=40+273.15; //[K] - temperature
+P=1; //[atm] - pressure
+// thermal conductivit of air
+sigma=3.711*10^-10; //[m]
+etadivkb=78.6; //[K]
+A=1.16145;
+B=0.14874;
+C=0.52487;
+D=0.77320;
+E=2.16178;
+F=2.43787;
+Tstar=T/(etadivkb);
+// using the formula si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar)
+si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar));
+// using the formula K=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si))
+M=28.966; //[kg/mole] - molecular weight of air
+k=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si));
+printf("\n\n Thermal conductivity of air is \n k=%fW/m*K",k);
+printf("\n\n Agreement between this value and original value is p[oor;the Chapman-Enskog theory is in erreo when applied to thermal conductivity of polyatomic gases");
+// thermal conductivity of argon
+sigma=3.542*10^-10; //[m]
+etadivkb=93.3; //[K]
+A=1.16145;
+B=0.14874;
+C=0.52487;
+D=0.77320;
+E=2.16178;
+F=2.43787;
+Tstar=T/(etadivkb);
+// using the formula si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar)
+si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar));
+// using the formula K=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si))
+M=39.948; //[kg/mole] - molecular weight of argon
+k=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si));
+printf("\n\n Thermal conductivity of argon is \n k=%fW/m*K",k);
+printf("\n\n The thermal conductivity from Chapman-Enskog theory agrees closely with the experimental value of 0.0185; note that argon is a monoatomic gas");
+