diff options
Diffstat (limited to '914/CH14')
-rwxr-xr-x | 914/CH14/EX14.1/ex14_1.sce | 21 | ||||
-rwxr-xr-x | 914/CH14/EX14.2/ex14_2.sce | 40 | ||||
-rwxr-xr-x | 914/CH14/EX14.3/ex14_3.sce | 20 | ||||
-rwxr-xr-x | 914/CH14/EX14.4/ex14_4.sce | 48 | ||||
-rwxr-xr-x | 914/CH14/EX14.5/ex14_5.sce | 32 | ||||
-rwxr-xr-x | 914/CH14/EX14.6/ex14_6.sce | 20 | ||||
-rwxr-xr-x | 914/CH14/EX14.7/ex14_7.sce | 20 | ||||
-rwxr-xr-x | 914/CH14/EX14.8/ex14_8.sce | 20 | ||||
-rwxr-xr-x | 914/CH14/EX14.9/ex14_9.sce | 20 |
9 files changed, 241 insertions, 0 deletions
diff --git a/914/CH14/EX14.1/ex14_1.sce b/914/CH14/EX14.1/ex14_1.sce new file mode 100755 index 000000000..7b390666b --- /dev/null +++ b/914/CH14/EX14.1/ex14_1.sce @@ -0,0 +1,21 @@ +clc;
+warning("off");
+printf("\n\n example14.1 - pg726");
+// given
+T=40+273.15; //[K] - temperature
+P=1; //[atm] - pressure
+sigma=3.711*10^-10; //[m]
+etadivkb=78.6; //[K]
+A=1.16145;
+B=0.14874;
+C=0.52487;
+D=0.77320;
+E=2.16178;
+F=2.43787;
+Tstar=T/(etadivkb);
+// using the formula si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar)
+si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar));
+M=28.966; //[kg/mole] - molecular weight
+// using the formula mu=(2.6693*(10^-26))*(((M*T)^(1/2))/((sigma^2)*si))
+mu=(2.6693*(10^-26))*(((M*T)^(1/2))/((sigma^2)*si));
+printf("\n\n The viscosity of air is \n mu=%eNs/m^2=%fcp",mu,mu*10^3);
diff --git a/914/CH14/EX14.2/ex14_2.sce b/914/CH14/EX14.2/ex14_2.sce new file mode 100755 index 000000000..a97e070ef --- /dev/null +++ b/914/CH14/EX14.2/ex14_2.sce @@ -0,0 +1,40 @@ +clc;
+warning("off");
+printf("\n\n example14.2.sce - pg726");
+T=40+273.15; //[K] - temperature
+P=1; //[atm] - pressure
+// thermal conductivit of air
+sigma=3.711*10^-10; //[m]
+etadivkb=78.6; //[K]
+A=1.16145;
+B=0.14874;
+C=0.52487;
+D=0.77320;
+E=2.16178;
+F=2.43787;
+Tstar=T/(etadivkb);
+// using the formula si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar)
+si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar));
+// using the formula K=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si))
+M=28.966; //[kg/mole] - molecular weight of air
+k=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si));
+printf("\n\n Thermal conductivity of air is \n k=%fW/m*K",k);
+printf("\n\n Agreement between this value and original value is p[oor;the Chapman-Enskog theory is in erreo when applied to thermal conductivity of polyatomic gases");
+// thermal conductivity of argon
+sigma=3.542*10^-10; //[m]
+etadivkb=93.3; //[K]
+A=1.16145;
+B=0.14874;
+C=0.52487;
+D=0.77320;
+E=2.16178;
+F=2.43787;
+Tstar=T/(etadivkb);
+// using the formula si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar)
+si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar));
+// using the formula K=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si))
+M=39.948; //[kg/mole] - molecular weight of argon
+k=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si));
+printf("\n\n Thermal conductivity of argon is \n k=%fW/m*K",k);
+printf("\n\n The thermal conductivity from Chapman-Enskog theory agrees closely with the experimental value of 0.0185; note that argon is a monoatomic gas");
+
diff --git a/914/CH14/EX14.3/ex14_3.sce b/914/CH14/EX14.3/ex14_3.sce new file mode 100755 index 000000000..c45e5a91d --- /dev/null +++ b/914/CH14/EX14.3/ex14_3.sce @@ -0,0 +1,20 @@ +clc;
+warning("off");
+printf("\n\n example14.3 - pg727");
+T=40+273.15; //[K] - temperature
+P=1; //[atm] - pressure
+Cp=1005; //[J/kg*K] - heat capacity
+M=28.966; //[kg/mole] - molecular weight
+R=8314.3; //[atm*m^3/K*mole] - gas constant
+// using the formula Cv=Cp-R/M
+Cv=Cp-R/M;
+y=Cp/Cv;
+mu=19.11*10^-6; //[kg/m*sec] - viscosity of air
+// using the original Eucken correlation
+k_original=mu*(Cp+(5/4)*(R/M));
+printf("\n\n From the original Eucken correlation\n k=%fW/m*K",k_original);
+// using the modified Eucken correlation
+k_modified=mu*(1.32*(Cp/y)+(1.4728*10^4)/M);
+printf("\n\n From the modified Eucken correlation \n k=%fW/m*K",k_modified);
+printf("\n\n As discussed, the value from the modified Eucken equation is highre than the experimental value(0.02709), and the value predicted by the original Eucken equation is lower than the experimental value , each being about 3 percent different, in this case");
+
diff --git a/914/CH14/EX14.4/ex14_4.sce b/914/CH14/EX14.4/ex14_4.sce new file mode 100755 index 000000000..d49bd487e --- /dev/null +++ b/914/CH14/EX14.4/ex14_4.sce @@ -0,0 +1,48 @@ +clc;
+warning("off");
+printf("\n\n example14.4 - pg728");
+// given
+D=7.66*10^-5; //[m^2/sec] - diffusion coefficient of the helium nitrogen
+P=1; //[atm] - pressure
+// (a) using the Chapman-Enskog
+T(1)=323; //[K]
+T(2)=413; //[K]
+T(3)=600; //[K]
+T(4)=900; //[K]
+T(5)=1200; //[K]
+Ma=4.0026;
+sigma_a=2.551*10^-10; //[m]
+etaabykb=10.22; //[K]
+Mb=28.016;
+sigma_b=3.798*10^-10; //[m]
+etabbykb=71.4; //[K]
+sigma_ab=(1/2)*(sigma_a+sigma_b);
+etaabbykb=(etaabykb*etabbykb)^(1/2);
+Tstar=T/(etaabbykb);
+siD=[0.7205;0.6929;0.6535;0.6134;0.5865];
+patm=1;
+// using the formula Dab=1.8583*10^-27*(((T^3)*((1/Ma)+(1/Mb)))^(1/2))/(patm*sigma_ab*siD)
+Dab=(1.8583*(10^-(27))*(((T^3)*((1/Ma)+(1/Mb)))^(1/2)))/(patm*(sigma_ab^(2))*siD)
+printf("\n\n (a)");
+for i=1:5;
+ printf("\n at T=%fK;Dab=%em^2/sec",T(i),Dab(i));
+end
+// (b) using experimental diffusion coefficient and Chapman-Enskog equation
+for i=1:4
+ D(i+1)=D(1)*((T(i+1)/T(1))^(3/2))*(siD(1)/(siD(i+1)));
+end
+printf("\n\n (b)");
+for i=1:5;
+ printf("\n at T=%fK;Dab=%em^2/sec",T(i),Dab(i));
+end
+// (c)
+for i=1:4
+ Dab(i+1)=D(1)*(T(i+1)/T(1))^(1.75);
+end
+printf("\n\n (c)");
+for i=1:5;
+ printf("\n at T=%fK;Dab=%em^2/sec",T(i),Dab(i));
+end
+
+
+
diff --git a/914/CH14/EX14.5/ex14_5.sce b/914/CH14/EX14.5/ex14_5.sce new file mode 100755 index 000000000..b0f45eb05 --- /dev/null +++ b/914/CH14/EX14.5/ex14_5.sce @@ -0,0 +1,32 @@ +clc;
+warning("off");
+printf("\n\n example14.5 - pg730");
+// given
+T=323; //[K] - temperature
+P=1; //[atm] - pressure
+Dab_experimental=7.7*10^-6; //[m^2/sec]
+DPM_A=1.9; // dipole moment of methyl chloride
+DPM_B=1.6; // dipole moment of sulphur dioxide
+Vb_A=5.06*10^-2; // liquid molar volume of methyl chloride
+Vb_B=4.38*10^-2
+Tb_A=249; // normal boiling point of methyl chloride
+Tb_B=263; // normal boiling point of sulphur dioxide
+del_A=((1.94)*(DPM_A)^2)/(Vb_A*Tb_A);
+del_B=((1.94)*(DPM_B)^2)/(Vb_B*Tb_B);
+del_AB=(del_A*del_B)^(1/2);
+sigma_A=(1.166*10^-9)*(((Vb_A)/(1+1.3*(del_A)^2))^(1/3));
+sigma_B=(1.166*10^-9)*(((Vb_B)/(1+1.3*(del_B)^2))^(1/3));
+etaabykb=(1.18)*(1+1.3*(del_A^2))*(Tb_A);
+etabbykb=(1.18)*(1+1.3*(del_B^2))*(Tb_B);
+sigma_AB=(1/2)*(sigma_A+sigma_B);
+etaabbykb=(etaabykb*etabbykb)^(1/2);
+Tstar=T/(etaabbykb);
+sigmaDnonpolar=1.602;
+sigmaDpolar=sigmaDnonpolar+(0.19*(del_AB^2))/Tstar;
+patm=1;
+Ma=50.488; //[kg/mole] - molecular weight of methyl chloride
+Mb=64.063; //[kg/mole] - molecular weight of sulphur dioxide
+D_AB=(1.8583*(10^-(27))*(((T^3)*((1/Ma)+(1/Mb)))^(1/2)))/(patm*(sigma_AB^(2))*sigmaDpolar);
+printf("\n\n Dab=%em^2/sec",D_AB);
+printf("\n\n The Chapman Enskog prediction is about 8 percent higher");
+
diff --git a/914/CH14/EX14.6/ex14_6.sce b/914/CH14/EX14.6/ex14_6.sce new file mode 100755 index 000000000..058310211 --- /dev/null +++ b/914/CH14/EX14.6/ex14_6.sce @@ -0,0 +1,20 @@ +clc;
+warning("off");
+printf("\n\n example14.6 - pg732");
+// given
+T=423.2; //[K] - temperature
+P=5; //[atm] - pressure
+Ma=4.0026; //[kg/mole] - molecular weight of helium
+Mb=60.09121; //[kg/mole] - molecular weight of propanol
+Dab_experimental=1.352*10^-5; //[m^2/sec] - experimental value of diffusion coefficient of helium-proponal system
+// the diffusion volumes for carbon , hydrogen and oxygen are-
+Vc=16.5;
+Vh=1.98;
+Vo=5.48;
+V_A=3*Vc+8*Vh+Vo;
+V_B=2.88;
+patm=5;
+// using the FSG correlation
+Dab=(10^-7)*(((T^1.75)*((1/Ma)+(1/Mb))^(1/2))/(patm*((V_A)^(1/3)+(V_B)^(1/3))^2));
+printf("\n\n Dab=%em^2/sec",Dab);
+printf("\n\n The FSG correlation agrees to about 2 percent with the experimental value");
diff --git a/914/CH14/EX14.7/ex14_7.sce b/914/CH14/EX14.7/ex14_7.sce new file mode 100755 index 000000000..e207072f5 --- /dev/null +++ b/914/CH14/EX14.7/ex14_7.sce @@ -0,0 +1,20 @@ +clc;
+warning("off");
+printf("\n\n example14.7 - pg736");
+// given
+beta0=-6.301289;
+beta1=1853.374;
+clf;
+xtitle("Temperature variation of the viscosity of water","(1/T)*10^3,K^-1","viscosity,cP");
+x=[2.2,0.2,3.8]';
+y=[(beta0+beta1*x)];
+plot2d(x,y);
+// at T=420;
+T=420; //[K]
+x=1/T;
+y=beta0+beta1*x;
+mu=exp(y);
+printf("\n\n mu=%fcP",mu);
+printf("\n\n The error is seen to be 18 percent.AT midrange 320(K), the error is approximately 4 percent");
+
+
diff --git a/914/CH14/EX14.8/ex14_8.sce b/914/CH14/EX14.8/ex14_8.sce new file mode 100755 index 000000000..0c1244b33 --- /dev/null +++ b/914/CH14/EX14.8/ex14_8.sce @@ -0,0 +1,20 @@ +clc;
+warning("off");
+printf("\n\n example14.8 - pg737");
+// given
+M=153.82; //[kg/mole] - molecular weight of ccl4
+T1=349.90; //[K] - temperature1
+T2=293.15; //[K] - temperature 2
+cp1=0.9205; //[KJ/kg*K] - heat capacity at temperature T1
+cp2=0.8368; //[KJ/kg*K] - heat capacity at temperature T2
+p1=1480; //[kg/m^3] - density at temperature T1
+p2=1590; //[kg/m^3] - density at temperature T2
+Tb=349.90; //[K] - normal boiling point
+pb=1480; //[kg/m^3] - density at normal boiling point
+cpb=0.9205; //[KJ/kg*K] - heat capacity at normal boiling point
+k1=(1.105/(M^(1/2)))*(cp1/cpb)*((p1/pb)^(4/3))*(Tb/T1);
+printf("\n\n The estimated thermal conductivity at normal boiling point is \n k=%f W*m^-1*K^-1",k1);
+k2=(1.105/(M^(1/2)))*(cp2/cpb)*((p2/pb)^(4/3))*(Tb/T2);
+printf("\n\n The estimated thermal conductivity at temperature %f K is \n k=%f W*m^-1*K^-1",T2,k2);
+printf("\n\n The estimated value is 3.4 percent higher than the experimental value of 0.1029 W*m^-1*K^-1");
+
diff --git a/914/CH14/EX14.9/ex14_9.sce b/914/CH14/EX14.9/ex14_9.sce new file mode 100755 index 000000000..ef6ed6107 --- /dev/null +++ b/914/CH14/EX14.9/ex14_9.sce @@ -0,0 +1,20 @@ +clc;
+warning("off");
+printf("\n\n example14.9 - pg743");
+// given
+T=288; //[K] - temperature
+M1=60.09; //[kg/mole] - molecular weight of proponal
+M2=18.015; //[kg/mole] - molecular weight of water
+mu1=2.6*10^-3; //[kg/m*sec] - viscosity of proponal
+mu2=1.14*10^-3; //[kg/m*sec] - viscosity of water
+Vc=14.8*10^-3; //[m^3/kmol] - molar volume of carbon
+Vh=3.7*10^-3; //[m^3/kmol] - mlar volume of hydrogen
+Vo=7.4*10^-3; //[m^3/kmol] - molar volume of oxygen
+Vp=3*Vc+8*Vh+Vo; // molar volume of proponal
+phi=2.26; // association factor for diffusion of proponal through water
+Dab=(1.17*10^-16*(T)*(phi*M2)^(1/2))/(mu2*(Vp^0.6));
+printf("\n\n The diffusion coefficient of proponal through water is \n Dab=%e m^2/sec",Dab);
+phi=1.5; // association factor for diffusion of water through proponal
+Vw=2*Vh+Vo; //[molar volume of water
+Dab=(1.17*10^-16*(T)*(phi*M1)^(1/2))/(mu1*(Vw^0.6));
+printf("\n\n The diffusion coefficient of water through propanol is \n Dab=%e m^2/sec",Dab);
|