diff options
Diffstat (limited to '848/CH3')
-rwxr-xr-x | 848/CH3/EX3.1/Example3_1.sce | 18 | ||||
-rwxr-xr-x | 848/CH3/EX3.2/Example3_2.sce | 20 | ||||
-rwxr-xr-x | 848/CH3/EX3.3/Example3_3.sce | 14 | ||||
-rwxr-xr-x | 848/CH3/EX3.4/Example3_4.sce | 21 | ||||
-rwxr-xr-x | 848/CH3/EX3.5/Example3_5.sce | 16 | ||||
-rwxr-xr-x | 848/CH3/EX3.6/Example3_6.sce | 19 | ||||
-rwxr-xr-x | 848/CH3/EX3.7/Example3_7.sce | 13 | ||||
-rwxr-xr-x | 848/CH3/EX3.8/Example3_8.sce | 15 |
8 files changed, 136 insertions, 0 deletions
diff --git a/848/CH3/EX3.1/Example3_1.sce b/848/CH3/EX3.1/Example3_1.sce new file mode 100755 index 000000000..1325273a5 --- /dev/null +++ b/848/CH3/EX3.1/Example3_1.sce @@ -0,0 +1,18 @@ +//clear//
+//Caption:Program to Find Attenuation in dB/km
+//Example3.1
+//page 91
+clear;
+clc;
+z = [1 2]; //diatances are in kilometer
+alpha_in_dB_per_km = 3;
+r = (alpha_in_dB_per_km*z)/10;
+P0_Pz = (10^r);
+for i = 1:length(P0_Pz)
+ Pz_P0(i) = 1-(1/P0_Pz(i)) ;
+end
+disp(Pz_P0*100,'Optical signal power decreased by in percentage')
+//RESULT
+//Optical signal power decreased by in percentage
+// 49.881277
+// 74.881136
diff --git a/848/CH3/EX3.2/Example3_2.sce b/848/CH3/EX3.2/Example3_2.sce new file mode 100755 index 000000000..bfb8a1d2c --- /dev/null +++ b/848/CH3/EX3.2/Example3_2.sce @@ -0,0 +1,20 @@ +//clear//
+//Caption: To Calculate input and output power in dBm
+//Example3.2
+//page 91
+clear;
+close;
+clc;
+Pin = 200e-06; //power launched into the fiber
+alpha = 0.4; //attenuation in dB per KM
+z = 30; //optical fiber length 30 KM
+Pin_dBm = 10*log10(Pin/1e-03);
+Pout_dBm = 10*log10(Pin/1e-03)-alpha*z;
+Pout = 10^(Pout_dBm/10)
+disp(Pin_dBm,'Pin_dBm')
+disp(Pout_dBm,'Pout_dBm')
+disp(Pout*1e-03,'Output power in watts')
+//Result
+//Pin_dBm = - 6.9897
+//Pout_dBm = - 18.9897
+//Output power in watts = 0.0000126
diff --git a/848/CH3/EX3.3/Example3_3.sce b/848/CH3/EX3.3/Example3_3.sce new file mode 100755 index 000000000..b0804f7fc --- /dev/null +++ b/848/CH3/EX3.3/Example3_3.sce @@ -0,0 +1,14 @@ +//clear//
+//Caption:Rayleigh scattering loss
+//Example3.3
+//page97
+clear;
+close;
+clc;
+alpha_0 = 1.64; //attenuation at Lambda_0 in dB/KM
+Lambda_0 = 850e-09;// wavelength 850 nanometer
+Lambda = 1310e-09; //wavelength 1350 nanometer
+alpha_Lambda = alpha_0*((Lambda_0/Lambda)^4);
+disp(alpha_Lambda,'Rayleigh scattering loss alpha(Lambda) = ')
+//Result
+//Rayleigh scattering loss alpha(Lambda) = 0.2906929
diff --git a/848/CH3/EX3.4/Example3_4.sce b/848/CH3/EX3.4/Example3_4.sce new file mode 100755 index 000000000..0813895d0 --- /dev/null +++ b/848/CH3/EX3.4/Example3_4.sce @@ -0,0 +1,21 @@ +//clear//
+//Caption:Program to calculate percent in decrease of number of modes
+//Example 3.4
+//page 99
+clear;
+clc;
+alpha = 2; //graded index profile
+n2 = 1.5; //cladding
+Lamda = 1.3e-06; //wavelength
+R = 0.01; //bend radius of curvature
+a = 25e-06;// core radius
+delta = 0.01; //core-cladding index profile
+k = 4.83e06; //propagation constant
+disp(k,'k = ')
+part1 = (2*a/R)+floor((3/(2*n2*k*R))^(2/3));
+part2 = (alpha+2)/(2*alpha*delta);
+Neff_Ninf = 1-part1*part2;
+disp('number of modes decreased by')
+disp('Percent in graded-index fiber',Neff_Ninf*100)
+//RESULTS
+//number of modes decreased by 50 Percent in graded-index fiber
diff --git a/848/CH3/EX3.5/Example3_5.sce b/848/CH3/EX3.5/Example3_5.sce new file mode 100755 index 000000000..8944c2812 --- /dev/null +++ b/848/CH3/EX3.5/Example3_5.sce @@ -0,0 +1,16 @@ +//clear//
+//Caption: Calculation of pulse broadening
+//Example3.5
+//page 103
+clear;
+clc;
+close;
+C = 3e08; //free space velocity in metre/sec
+n1 = 1.48;//core refractive index
+n2 = 1.465;//cladding refractive index
+delta = 0.01; //index difference
+L = 10^3;//fiber length 10KM
+deltaT = (L*(n1^2)/(C*n2))*delta;
+disp((deltaT/L)*10^12,'pulse broadening in ns/KM')
+//Result
+//pulse broadening in ns/KM = 49.838453
diff --git a/848/CH3/EX3.6/Example3_6.sce b/848/CH3/EX3.6/Example3_6.sce new file mode 100755 index 000000000..63f1b9b2b --- /dev/null +++ b/848/CH3/EX3.6/Example3_6.sce @@ -0,0 +1,19 @@ +//clear//
+//Caption:Calculation of bandwidth distance
+//Example3.6
+//page 104
+clear;
+clc;
+close;
+n1 = 1.48;//core refractive index
+n2 = 1.465;//claddinig refractive index
+delta = 0.01;//index difference
+C =3*(10^8); //free space velcotiy
+BL = (n2/(n1^2))*(C/delta);
+disp(BL,'Bandwidth distance in bPS-M')
+disp(BL/10^9,'Bandwidth distance in MbPS-KM')
+//Result
+//Bandwidth distance in bPS-M
+// 2.006D+10
+//Bandwidth distance in MbPS-KM
+// 20.064828
diff --git a/848/CH3/EX3.7/Example3_7.sce b/848/CH3/EX3.7/Example3_7.sce new file mode 100755 index 000000000..1a34c568f --- /dev/null +++ b/848/CH3/EX3.7/Example3_7.sce @@ -0,0 +1,13 @@ +//clear//
+//Caption:Program to Find out the Material Dispersion
+//Example3.7
+//page107
+clear;
+clc;
+Lamda = 800e-09;//Wavelength in meter
+sigma_Lamda_LED = 40e-09;//spectral width in meters
+pulse_spread = 4.4e-12;//pulse spread in sec/meter
+mat_dispersion = pulse_spread/sigma_Lamda_LED
+disp(mat_dispersion,'material dispersion in seconds/square meter')
+//Result
+//material dispersion in seconds/square meter 0.00011
diff --git a/848/CH3/EX3.8/Example3_8.sce b/848/CH3/EX3.8/Example3_8.sce new file mode 100755 index 000000000..f54f7c0d7 --- /dev/null +++ b/848/CH3/EX3.8/Example3_8.sce @@ -0,0 +1,15 @@ +//clear//
+//Caption:Program to Find out Waveguide Dispersion
+//Example3.8
+//page110
+clear;
+clc;
+n2 = 1.48; //index of cladding
+delta = 0.002; //index difference
+Lamda = 1320e-09; //Wavelength in meters
+V_dVb_dV = 0.26; //The value in square brackets for v = 2.4
+C =3e08;//Enter the velocity of light in free space
+Dwg_Lamda = -(((n2*delta)/C)*(1/Lamda))*V_dVb_dV
+disp(Dwg_Lamda*1e06,'The waveguide dispersion in ps/nm.km');
+//RESULTS
+//The waveguide dispersion in ps/nm.km = - 1.9434343
|