diff options
Diffstat (limited to '83/CH3')
-rwxr-xr-x | 83/CH3/EX3.1/example_3_1.sce | 22 | ||||
-rwxr-xr-x | 83/CH3/EX3.1/result_example_3_1.txt | 10 | ||||
-rwxr-xr-x | 83/CH3/EX3.2/example_3_2.sce | 21 | ||||
-rwxr-xr-x | 83/CH3/EX3.2/result_exapmle_3_2.txt | 9 | ||||
-rwxr-xr-x | 83/CH3/EX3.3/example_3_3.sce | 31 | ||||
-rwxr-xr-x | 83/CH3/EX3.3/result_example_3_3.txt | 8 |
6 files changed, 101 insertions, 0 deletions
diff --git a/83/CH3/EX3.1/example_3_1.sce b/83/CH3/EX3.1/example_3_1.sce new file mode 100755 index 000000000..fc0512a14 --- /dev/null +++ b/83/CH3/EX3.1/example_3_1.sce @@ -0,0 +1,22 @@ +//Chapter 3 +//Example 3.1 +//page 87 +//To calculate the capacitance to neutral of a single phase line +clear;clc; +r=0.328; //radius of the conductors +D=300; //distance between the conductors +h=750; //height of the conductors + +//calculating capacitance neglecting the presence of ground +//using Eq (3.6) +Cn=(0.0242/(log10(D/r))); +printf("\nCapacitance to neutral /km of the given single phase line neglecting presence of the earth (using Eq 3.6) is = %0.5f uF/km\n\n",Cn); + +//using Eq (3.7) +Cn=(0.0242)/log10((D/(2*r))+((D^2)/(4*r^2)-1)^0.5); +printf("Capacitance to neutral /km of the given single phase line neglecting presence of the earth (using Eq 3.7) is = %0.5f uF/km\n\n",Cn); + +//Consudering the effect of earth and neglecting the non uniformity of the charge +Cn=(0.0242)/log10(D/(r*(1+((D^2)/(4*h^2)))^0.5)); +printf("Capacitance to neutral /km of the given single phase line considering the presence of the earth and neglecting non uniformity of charge distribution (using Eq 3.26b) is = %0.5f uF/km\n\n",Cn); + diff --git a/83/CH3/EX3.1/result_example_3_1.txt b/83/CH3/EX3.1/result_example_3_1.txt new file mode 100755 index 000000000..9afdbd2be --- /dev/null +++ b/83/CH3/EX3.1/result_example_3_1.txt @@ -0,0 +1,10 @@ + + +Capacitance to neutral /km of the given single phase line neglecting presence of the earth (using Eq 3.6) is = 0.00817 uF/km + +Capacitance to neutral /km of the given single phase line neglecting presence of the earth (using Eq 3.7) is = 0.00817 uF/km + +Capacitance to neutral /km of the given single phase line considering the presence of the earth and neglecting non uniformity of charge distribution (using Eq 3.26b) is = 0.00820 uF/km + + + diff --git a/83/CH3/EX3.2/example_3_2.sce b/83/CH3/EX3.2/example_3_2.sce new file mode 100755 index 000000000..e31235042 --- /dev/null +++ b/83/CH3/EX3.2/example_3_2.sce @@ -0,0 +1,21 @@ +//Chapter 3 +//Example 3.2 +//page 88 +//To claculate the capacitance to neutral and charging current of a three phase transmission line +clear;clc; +d=350; //distance between adjacent lines +r=1.05/2; //radius of the conductor +v=110e3; //line voltage; +f=50; + +Deq=(d*d*2*d)^(1/3); //GMD or equivalent + +Cn=(0.0242/log10(Deq/r)); + +Xn=1/(2*%pi*f*Cn*10^(-6)); // Cn is in uF hence we add 10^6 while printing + +Ic=(v/sqrt(3))/Xn; + +printf("\nCapacitance to neutral is = %f uF/km\n\n",Cn); +printf("Capacitive rectance of the line is = %f ohm/km to neutral\n\n",Xn); +printf("Charging Current = %0.2f A/km\n\n",Ic);
\ No newline at end of file diff --git a/83/CH3/EX3.2/result_exapmle_3_2.txt b/83/CH3/EX3.2/result_exapmle_3_2.txt new file mode 100755 index 000000000..36aad3e31 --- /dev/null +++ b/83/CH3/EX3.2/result_exapmle_3_2.txt @@ -0,0 +1,9 @@ + + +Capacitance to neutral is = 0.008276 uF/km + +Capacitive rectance of the line is = 384635.679536 ohm/km to neutral + +Charging Current = 0.17 A/km + + diff --git a/83/CH3/EX3.3/example_3_3.sce b/83/CH3/EX3.3/example_3_3.sce new file mode 100755 index 000000000..07e3791c8 --- /dev/null +++ b/83/CH3/EX3.3/example_3_3.sce @@ -0,0 +1,31 @@ +//Chapter 3 +//Example 3.3 +//page 88 +//To claculate the capacitance to neutral and charging current of a double circuit three phase transmission line +clear;clc; + +//After deriving the equation for Cn from the textbook and starting calculation from Eq 3.36 onwards + +r=0.865*10^(-2); frequency=50; v=110e3; +h=6; d=8; j=8; //Referring to fig given in the textbook + +i=((j/2)^2+((d-h)/2)^2)^(1/2); +f=(j^2+h^2)^(1/2); +g=(7^2+4^2)^(1/2); + + +Cn=4*%pi*8.85*10^(-12)/(log((((i^2)*(g^2)*j*h)/((r^3)*(f^2*d)))^(1/3))); + +Cn=Cn*1000 ; //Cn is in per m.to convert it to per km,we multiply by 1000 +WCn=2*%pi*frequency*Cn; + +Icp=(v/sqrt(3))*WCn; + +Icc=Icp/2; + +printf("\nTotal capacitance to neutral for two conductors in parallel = %0.6f uF/km \n\n",Cn*10^(6)); +printf("Charging current/phase = %0.3f A/km \n\n",Icp); +printf("Charging current/conductor = %0.4f A/km \n\n",Icc); + + + diff --git a/83/CH3/EX3.3/result_example_3_3.txt b/83/CH3/EX3.3/result_example_3_3.txt new file mode 100755 index 000000000..6602fe5d9 --- /dev/null +++ b/83/CH3/EX3.3/result_example_3_3.txt @@ -0,0 +1,8 @@ + + +Total capacitance to neutral for two conductors in parallel = 0.018088 uF/km + +Charging current/phase = 0.361 A/km + +Charging current/conductor = 0.1804 A/km + |