summaryrefslogtreecommitdiff
path: root/752
diff options
context:
space:
mode:
Diffstat (limited to '752')
-rwxr-xr-x752/CH1/EX1.10.1/1_10_1.sce32
-rwxr-xr-x752/CH1/EX1.2.2/1_2_2.sce14
-rwxr-xr-x752/CH1/EX1.2.3/1_2_3.sce15
-rwxr-xr-x752/CH1/EX1.2.4/1_2_4.sce15
-rwxr-xr-x752/CH1/EX1.2.5/1_2_5.sce15
-rwxr-xr-x752/CH1/EX1.5.1/1_5_1.sce18
-rwxr-xr-x752/CH1/EX1.8.1/1_8_1.sce27
-rwxr-xr-x752/CH10/EX10.12.1/10_12_1.sce11
-rwxr-xr-x752/CH10/EX10.13.1/10_13_1.sce13
-rwxr-xr-x752/CH11/EX11.3.1/11_3_1.sce9
-rwxr-xr-x752/CH11/EX11.3.2/11_3_2.sce11
-rwxr-xr-x752/CH12/EX12.13.1/12_13_1.sce11
-rwxr-xr-x752/CH12/EX12.13.3/12_13_3.sce14
-rwxr-xr-x752/CH12/EX12.13.4/12_13_4.sce16
-rwxr-xr-x752/CH12/EX12.4.1/12_4_1.sce11
-rwxr-xr-x752/CH12/EX12.4.2/12_4_2.sce9
-rwxr-xr-x752/CH12/EX12.4.3/12_4_3.sce12
-rwxr-xr-x752/CH12/EX12.5.1/12_5_1.sce13
-rwxr-xr-x752/CH12/EX12.9.1/12_9_1.sce8
-rwxr-xr-x752/CH13/EX13.10.1/13_10_1.sce21
-rwxr-xr-x752/CH13/EX13.11.1/13_11_1.sce14
-rwxr-xr-x752/CH13/EX13.17.1/13_17_1.sce14
-rwxr-xr-x752/CH13/EX13.17.2/13_17_2.sce18
-rwxr-xr-x752/CH13/EX13.17.3/13_17_3.sce22
-rwxr-xr-x752/CH13/EX13.5.2/13_5_2.sce12
-rwxr-xr-x752/CH14/EX14.2.1/14_2_1.sce22
-rwxr-xr-x752/CH15/EX15.2.1/15_2_1.sce18
-rwxr-xr-x752/CH15/EX15.2.2/15_2_2.sce10
-rwxr-xr-x752/CH15/EX15.3.1/15_3_1.sce15
-rwxr-xr-x752/CH15/EX15.3.2/15_3_2.sce6
-rwxr-xr-x752/CH15/EX15.4.1/15_4_1.sce13
-rwxr-xr-x752/CH15/EX15.7.1/15_7_1.sce27
-rwxr-xr-x752/CH16/EX16.19.1/16_19_1.sce17
-rwxr-xr-x752/CH16/EX16.7.2/16_7_2.sce14
-rwxr-xr-x752/CH16/EX16.9.1/16_9_1.sce13
-rwxr-xr-x752/CH17/EX17.1.1/17_1_1.sce20
-rwxr-xr-x752/CH18/EX18.2.1/18_2_1.sce9
-rwxr-xr-x752/CH18/EX18.2.2/18_2_2.sce18
-rwxr-xr-x752/CH18/EX18.3.1/18_3_1.sce14
-rwxr-xr-x752/CH18/EX18.3.2/18_3_2.sce13
-rwxr-xr-x752/CH18/EX18.3.3/18_3_3.sce9
-rwxr-xr-x752/CH18/EX18.7.1/18_7_1.sce14
-rwxr-xr-x752/CH18/EX18.7.2/18_7_2.sce13
-rwxr-xr-x752/CH19/EX19.14.1/19_14_1.sce11
-rwxr-xr-x752/CH19/EX19.14.2/19_14_2.sce9
-rwxr-xr-x752/CH19/EX19.16.1/19_16_1.sce10
-rwxr-xr-x752/CH19/EX19.17.1/19_17_1.sce11
-rwxr-xr-x752/CH2/EX2.13.1/2_13_1.sce9
-rwxr-xr-x752/CH20/EX20.2.1/20_2_1.sce12
-rwxr-xr-x752/CH20/EX20.2.2/20_2_2.sce11
-rwxr-xr-x752/CH20/EX20.2.3/20_2_3.sce8
-rwxr-xr-x752/CH20/EX20.2.4/20_2_4.sce10
-rwxr-xr-x752/CH20/EX20.2.5/20_2_5.sce16
-rwxr-xr-x752/CH20/EX20.3.1/20_3_1.sce11
-rwxr-xr-x752/CH20/EX20.4.1/20_4_1.sce11
-rwxr-xr-x752/CH20/EX20.4.2/20_4_2.sce9
-rwxr-xr-x752/CH20/EX20.4.3/20_4_3.sce9
-rwxr-xr-x752/CH20/EX20.4.4/20_4_4.sce6
-rwxr-xr-x752/CH20/EX20.4.5/20_4_5.sce10
-rwxr-xr-x752/CH20/EX20.4.6/20_4_6.sce11
-rwxr-xr-x752/CH20/EX20.5.1/20_5_1.sce18
-rwxr-xr-x752/CH20/EX20.8.1/20_8_1.sce14
-rwxr-xr-x752/CH4/EX4.11.1/4_11_1.sce30
-rwxr-xr-x752/CH4/EX4.12.1/4_12_1.sce10
-rwxr-xr-x752/CH4/EX4.12.2/4_12_2.sce18
-rwxr-xr-x752/CH4/EX4.13.1/4_13_1.sce9
-rwxr-xr-x752/CH4/EX4.14.1/4_14_1.sce11
-rwxr-xr-x752/CH4/EX4.15.1/4_15_1.sce16
-rwxr-xr-x752/CH4/EX4.17.1/4_17_1.sce9
-rwxr-xr-x752/CH4/EX4.18.1/4_18_1.sce17
-rwxr-xr-x752/CH4/EX4.19.1/4_19_1.sce16
-rwxr-xr-x752/CH4/EX4.2.1/4_2_1.sce14
-rwxr-xr-x752/CH4/EX4.2.2/4_2_2.sce23
-rwxr-xr-x752/CH4/EX4.2.3/4_2_3.sce15
-rwxr-xr-x752/CH4/EX4.3.1/4_3_1.sce10
-rwxr-xr-x752/CH5/EX5.4.1/5_4_1.sce22
-rwxr-xr-x752/CH5/EX5.4.2/5_4_2.sce29
-rwxr-xr-x752/CH6/EX6.3.1/6_3_1.sce20
-rwxr-xr-x752/CH6/EX6.3.2/6_3_2.sce10
-rwxr-xr-x752/CH6/EX6.3.3/6_3_3.sce15
-rwxr-xr-x752/CH6/EX6.4.1/6_4_1.sce37
-rwxr-xr-x752/CH6/EX6.6.1/6_6_1.sce10
-rwxr-xr-x752/CH6/EX6.6.2/6_6_2.sce22
-rwxr-xr-x752/CH7/EX7.3.1/7_3_1.sce18
-rwxr-xr-x752/CH7/EX7.4.1/7_4_1.sce10
-rwxr-xr-x752/CH7/EX7.6.1/7_6_1.sce17
-rwxr-xr-x752/CH7/EX7.7.1/7_7_1.sce24
-rwxr-xr-x752/CH8/EX8.11.1/8_11_1.sce13
-rwxr-xr-x752/CH8/EX8.3.1/8_3_1.sce14
-rwxr-xr-x752/CH8/EX8.5.1/8_5_1.sce10
-rwxr-xr-x752/CH8/EX8.7.1/8_7_1.sce8
-rwxr-xr-x752/CH9/EX9.2/9_2.sce7
-rwxr-xr-x752/CH9/EX9.6/9_6.sce13
93 files changed, 1343 insertions, 0 deletions
diff --git a/752/CH1/EX1.10.1/1_10_1.sce b/752/CH1/EX1.10.1/1_10_1.sce
new file mode 100755
index 000000000..223ec73d0
--- /dev/null
+++ b/752/CH1/EX1.10.1/1_10_1.sce
@@ -0,0 +1,32 @@
+clc;
+// page no 34
+// prob no 1_10_1
+//From the ckt of fig. 1.10.1(a)
+C1=70*10^-12
+C2=150*10^-12
+Rl=200
+Q=150
+f=27*10^6
+r=40000
+//Determination of common resonant freq
+wo=2*3.14*f;
+disp('Mrad/sec',wo/(10^6),+'The value of common resonant freq is');
+//Determination of Gl
+Gl=1/Rl;
+disp('mSec',Gl*(10^3),+'The value of Gl is');
+//Checking the approxiamtion in denominator
+ap=((wo*(C1+C2))/(Gl))^2
+alpha=(C1+C2)/C1;
+disp(alpha,'The value of alpha is ')
+//Determination of effective load
+Reff=((alpha)^2)*Rl;
+disp('kohm',Reff/(10^3),+'The value of effective load is');
+//If effective load is much less than internal resistance hence tuning capacitance then
+Cs=C1*C2/(C1+C2);
+disp('pF',Cs*(10^12),+'The value of tuning capacitance is');
+//Determination of Rd
+Rd=Q/(wo*Cs);
+disp('kohm',Rd/(10^3),+'The value of Rd is');
+//If Rd is much greater than Reff then -3dB bandwidth is given by
+B=1/(2*3.14*C2*alpha*Rl);
+disp('MHz',B/(10^6),+'The value of -3dB BW is'); \ No newline at end of file
diff --git a/752/CH1/EX1.2.2/1_2_2.sce b/752/CH1/EX1.2.2/1_2_2.sce
new file mode 100755
index 000000000..d1d4abf62
--- /dev/null
+++ b/752/CH1/EX1.2.2/1_2_2.sce
@@ -0,0 +1,14 @@
+clc;
+// page no 5
+// prob no 1_2_2
+//T-type attenuator provide 6-dB insertion loss
+//All resistance are in ohm
+Ro=50
+ILdB=6
+IL=10^-(ILdB/20)
+//Determination of R
+R=Ro*(1-IL)/(1+IL)
+disp('ohm',R,+'The value of resistance R is')
+//Determination of R3
+R3=(2*Ro*IL)/(1-(0.5)^2)
+disp('ohm',R3,+'The value of resistance R3 is') \ No newline at end of file
diff --git a/752/CH1/EX1.2.3/1_2_3.sce b/752/CH1/EX1.2.3/1_2_3.sce
new file mode 100755
index 000000000..d849528b4
--- /dev/null
+++ b/752/CH1/EX1.2.3/1_2_3.sce
@@ -0,0 +1,15 @@
+clc;
+// page no 7
+// prob no 1_2_3
+//pi-attenuator with 6 dB insertion loss
+//output resistance is Ro=50 ohm
+//All resistance are in ohm
+Ro=50
+ILdB=6
+IL=10^-(ILdB/20)
+//Determination of RA and RB
+RA=Ro*(1+IL)/(1-IL);
+disp('ohm',RA,+'The value of resistance RA and RB is')
+//Determination of RC
+RC=Ro*(1-(IL)^2)/(2*IL);
+disp('ohm',RC,+'The value of resistance RC is') \ No newline at end of file
diff --git a/752/CH1/EX1.2.4/1_2_4.sce b/752/CH1/EX1.2.4/1_2_4.sce
new file mode 100755
index 000000000..50d2069ea
--- /dev/null
+++ b/752/CH1/EX1.2.4/1_2_4.sce
@@ -0,0 +1,15 @@
+clc;
+// page no 9
+// prob no 1_2_4
+//As given in fig. 1.2.4 L-attenuator with source resistance Rs=75 ohm and load resistance Rl=50 ohm
+Rs=75; Rl=50;
+//Determination of R1
+R1=(Rs*(Rs-Rl))^(1/2);
+disp('ohm',R1,+'The value of resistance R1 is');
+//Determination of R3
+R3=((Rs^2)-(R1^2))/R1;
+disp('ohm',R3,+'The value of resistance R3 is');
+//Determination of insertion loss
+IL=(R3*(Rs+R1))/((Rs+R1+R3)*(R3+R1)-(R3)^2)
+ILdB=-20*log10(IL);//convertion of power in decibels
+disp('dB',ILdB,+'The value of insertion loss is'); \ No newline at end of file
diff --git a/752/CH1/EX1.2.5/1_2_5.sce b/752/CH1/EX1.2.5/1_2_5.sce
new file mode 100755
index 000000000..ce1570096
--- /dev/null
+++ b/752/CH1/EX1.2.5/1_2_5.sce
@@ -0,0 +1,15 @@
+clc;
+// page no 10
+// prob no 1_2_5
+//As given in fig. 1.2.4 L-attenuator with source resistance Rs=10 ohm and load resistance Rl=50 ohm
+Rs=10; Rl=50;
+//Determination of R2
+R2=(Rl*(Rl-Rs))^(1/2);
+disp('ohm',R2,+'The value of resistance R2 is');
+//Determination of R3
+R3=((Rl^2)-(R2^2))/R2;
+disp('ohm',R3,+'The value of resistance R3 is');
+//Determination of insertion loss
+IL=(R3*(Rs+Rl))/((Rs+R3)*(R3+R2+Rl)-(R3)^2)
+ILdB=-20*log10(IL);//convertion of power in decibels
+disp('dB',ILdB,+'The value of insertion loss is'); \ No newline at end of file
diff --git a/752/CH1/EX1.5.1/1_5_1.sce b/752/CH1/EX1.5.1/1_5_1.sce
new file mode 100755
index 000000000..ea644d99b
--- /dev/null
+++ b/752/CH1/EX1.5.1/1_5_1.sce
@@ -0,0 +1,18 @@
+clc;
+// page no 21
+// prob no 1_5_1
+//Series tuned resonant ckt is given which is tuned at 25 MHz with
+//series resistance 5 ohm self capacitance 7 pF and inductance 1 uH
+C=7*10^-12;R=5;L=10^-6;f=25*10^6;
+//Determination of self resonant freq of coil denoted as Fsr
+Fsr=1/(2*3.14*(L*C)^0.5);
+disp('MHz',Fsr/(10^6),+'The value of self resonant freq is');
+//Determination of Q-factor of coil,excluding self-capacitive effects
+Q=(2*3.14*f*L)/R;
+disp(Q,'The value of Q-factor is');
+//Determination of effective inductance
+Leff=L/(1-(f/Fsr)^2);
+disp('uH',Leff*(10^6),+'The value of effective inductance is');
+//Determination of effective Q-factor
+Qeff=Q*(1-(f/Fsr)^2);
+disp(Qeff,'The value of effective Q-factor is'); \ No newline at end of file
diff --git a/752/CH1/EX1.8.1/1_8_1.sce b/752/CH1/EX1.8.1/1_8_1.sce
new file mode 100755
index 000000000..557bffb39
--- /dev/null
+++ b/752/CH1/EX1.8.1/1_8_1.sce
@@ -0,0 +1,27 @@
+clc;
+// page no 26
+// prob no 1_8_1
+//High frequency transformer with identical primary and secondary circuits
+Lp=150*10^-6;
+Ls=150*10^-6;
+Cp=470*10^-12;
+Cs=470*10^-12;
+//Lp=Ls=150 uH,Cp=Cs=470 pF
+Q=85//Q-factor for each ckt is 85
+c=0.01//Coeff of coupling is 0.01
+Rl=5000//Load resistance Rl=5000 ohm
+r=75000//Constant current source with internal resistance r=75 kohm
+//Determination of common resonant frequency
+wo=1/((Lp*Cp)^(1/2));
+//disp('Mrad/sec',wo/(10^6),+'The value of common resonant freq is');
+p=3.77*10^6;
+Z2=Rl/(1+(p*%i*Cs*Rl));
+Z1=r/(1+(p*%i*Cp*r));
+// At resonance Zs=Zp=Z
+Z=wo*Ls*(1/Q +%i);
+Zm=%i*p*c*Lp;
+// Determination of denominator
+Dr=((Z+Z1)*(Z+Z2))-(Zm^2)
+// Hence transfer impedance is given as
+Zr= (Z1*Z2*Zm)/Dr;
+disp('ohm',Zr,'The transfer impedance is'); \ No newline at end of file
diff --git a/752/CH10/EX10.12.1/10_12_1.sce b/752/CH10/EX10.12.1/10_12_1.sce
new file mode 100755
index 000000000..0a926fd76
--- /dev/null
+++ b/752/CH10/EX10.12.1/10_12_1.sce
@@ -0,0 +1,11 @@
+clc;
+//page no 343
+//problem no 10.12.1
+p=10;t=0.3*10^-6;gm=2*10^-3;
+q=1/p;f_max=q/(2*%pi*t);
+Z2=p/gm;
+R2=Z2;//Z2 is resistance
+//Determination of equivalent tuning capacitance
+C1=t/R2;
+Ceq=gm*t;
+disp('f',Ceq,'The equivaent tuning capacitance is'); \ No newline at end of file
diff --git a/752/CH10/EX10.13.1/10_13_1.sce b/752/CH10/EX10.13.1/10_13_1.sce
new file mode 100755
index 000000000..37a6b2a10
--- /dev/null
+++ b/752/CH10/EX10.13.1/10_13_1.sce
@@ -0,0 +1,13 @@
+clc;
+//page no 349
+//problem no 10.13.1
+del_phi_d=12;f_min=100;del_f_max_allow=15000;
+del_phi_rad=(12*%pi)/180;
+del_f_max=del_phi_rad*f_min;
+//Determination of freq deviation
+N=del_f_max_allow/del_f_max;
+l=del_f_max*729;//using six tripler
+f=0.1*729;
+//Determination of signal oscillator signal
+fo=152-f;
+disp('MHz',fo,'fo is best obtained by using two tripler'); \ No newline at end of file
diff --git a/752/CH11/EX11.3.1/11_3_1.sce b/752/CH11/EX11.3.1/11_3_1.sce
new file mode 100755
index 000000000..2bc6f4166
--- /dev/null
+++ b/752/CH11/EX11.3.1/11_3_1.sce
@@ -0,0 +1,9 @@
+clc;
+//page no 392
+//prob no. 11.3.1
+//PCM system with SNR=40dB & rms peak ratio=-10
+SNR=40;
+//a)Determination of no. of bits/code
+n=(SNR-(10*log10(3))-(-10))/(20*log10(2));
+disp(n,'The no. of bits per code word is');
+disp('Rounded off ','=8'); \ No newline at end of file
diff --git a/752/CH11/EX11.3.2/11_3_2.sce b/752/CH11/EX11.3.2/11_3_2.sce
new file mode 100755
index 000000000..b10c5a2ec
--- /dev/null
+++ b/752/CH11/EX11.3.2/11_3_2.sce
@@ -0,0 +1,11 @@
+clc;
+//page no 393
+//prob no. 11.3.2
+//A telephone signal wih cut off freq=4kHz digitzed into 8-bit at nyquist sampling rate fs=2W
+q=1;W=4*10^3;n=8;
+//a)Determination of Tx Bandwidth
+B=(1+q)*W*n;
+disp('Hz',B,'a)The transmission BW is');
+//b)Determination of quantization S/N ratio
+SN_dB=6*n;
+disp('dB',SN_dB,'b)The quantization S/N ration is'); \ No newline at end of file
diff --git a/752/CH12/EX12.13.1/12_13_1.sce b/752/CH12/EX12.13.1/12_13_1.sce
new file mode 100755
index 000000000..a6a18b689
--- /dev/null
+++ b/752/CH12/EX12.13.1/12_13_1.sce
@@ -0,0 +1,11 @@
+clc;
+//page no 451
+//problem no 12.13.1
+//A 8 bit codewords
+Pbec=0.01;n=8;i=3;
+Pi=(Pbec^i)*((1-(Pbec))^(n-i));
+Cin=(factorial(n))/(factorial(i)*factorial(n-i));
+Pin=Cin*Pi;
+P_in=Cin*Pbec^i
+disp(Pin,'Pin=','The probability of a received codeword');
+disp(P_in,'P_in'); \ No newline at end of file
diff --git a/752/CH12/EX12.13.3/12_13_3.sce b/752/CH12/EX12.13.3/12_13_3.sce
new file mode 100755
index 000000000..536d6fbd6
--- /dev/null
+++ b/752/CH12/EX12.13.3/12_13_3.sce
@@ -0,0 +1,14 @@
+clc;
+//page no 454
+//problem no 12.13.3
+SN_dB=9;
+SNR=10^(SN_dB/10);
+PbeU=1/2 * (1-erf(sqrt(SNR)));
+BERu=PbeU;
+disp(BERu,'a)The bit error probability');
+n=10;k=n-1;
+r=k/n;
+SNR1=r*SNR;
+PbeC=1/2 * (1-erf(sqrt(SNR1)));
+BERc=(n-1)*PbeC^2;
+disp(BERc,'b)The bit error probability'); \ No newline at end of file
diff --git a/752/CH12/EX12.13.4/12_13_4.sce b/752/CH12/EX12.13.4/12_13_4.sce
new file mode 100755
index 000000000..515147f96
--- /dev/null
+++ b/752/CH12/EX12.13.4/12_13_4.sce
@@ -0,0 +1,16 @@
+clc;
+//page no 457
+//problem no 12.13.4
+//Tx link
+SN_dB=8;
+SNR=10^(SN_dB/10);
+//a)Determination of bit error rate
+PbeU=0.5*(1-erf(sqrt(SNR)));
+BER_U=PbeU;
+disp(BER_U,'a)The bit-error rate is');
+//b)new bit error rate
+n=15;k=11;t=1;r=k/n;
+SNR_n=r*SNR;
+PbeC=0.5*(1-erf(sqrt(SNR_n)));
+BER_C=((factorial(n-1))*PbeC^(t+1))/((factorial(t))*(factorial(n-t-1)));
+disp(BER_C,'The new bit error rate is'); \ No newline at end of file
diff --git a/752/CH12/EX12.4.1/12_4_1.sce b/752/CH12/EX12.4.1/12_4_1.sce
new file mode 100755
index 000000000..18a95e609
--- /dev/null
+++ b/752/CH12/EX12.4.1/12_4_1.sce
@@ -0,0 +1,11 @@
+clc;
+//page no 419
+// problem no 12.4.1
+//a binary polar waveform with following specifications are given
+Vs_Vn=4;//SNVR
+a=erf(4/sqrt(2));
+b=erfc(4/sqrt(2));
+Pbe=1/2 * b;// bit error probability
+disp(a);
+disp(b);
+disp(Pbe,'The bit error probability'); \ No newline at end of file
diff --git a/752/CH12/EX12.4.2/12_4_2.sce b/752/CH12/EX12.4.2/12_4_2.sce
new file mode 100755
index 000000000..bef067f0a
--- /dev/null
+++ b/752/CH12/EX12.4.2/12_4_2.sce
@@ -0,0 +1,9 @@
+clc;
+//page no 420
+//problem no 12.4.2
+//a binary unipolar waveform with following specifications are given
+A=4;//max value of received signal voltage
+Vn=0.5;//rms noise voltage
+Vth=2;//Threshold voltage for the comparator
+Pbe=1/2 * b;// bit error probability
+disp(Pbe,'The bit error probability'); \ No newline at end of file
diff --git a/752/CH12/EX12.4.3/12_4_3.sce b/752/CH12/EX12.4.3/12_4_3.sce
new file mode 100755
index 000000000..d925f0ae2
--- /dev/null
+++ b/752/CH12/EX12.4.3/12_4_3.sce
@@ -0,0 +1,12 @@
+clc;
+//page no 421
+//problem no 12.4.3
+SNR=9;//SNR in dB
+//conversion of dB to power ratio
+p=10^(9/10);
+// for Polar
+Pbe1=1/2 * erfc(sqrt(7.94/2));
+disp(Pbe1);
+// for Unipolar
+Pbe2=1/2 * erfc(sqrt(7.94)/2);
+disp(Pbe2); \ No newline at end of file
diff --git a/752/CH12/EX12.5.1/12_5_1.sce b/752/CH12/EX12.5.1/12_5_1.sce
new file mode 100755
index 000000000..7effec386
--- /dev/null
+++ b/752/CH12/EX12.5.1/12_5_1.sce
@@ -0,0 +1,13 @@
+clc;
+//page no 423
+//problem no 12.5.1
+// binary unipolar signal is given
+Pavg=6*10^-12;//in W
+d=0.02*10^-6;//pulse duration in sec
+T=550;//equivalent noise temp in K
+Eb=Pavg*d;//avg energy per pulse
+No=1.38*10^-23 *T;
+r=Eb/No;
+//Bit error probability is
+Pbe=1/2 * erfc(sqrt(r/2));
+disp(Pbe,'The bit error probability'); \ No newline at end of file
diff --git a/752/CH12/EX12.9.1/12_9_1.sce b/752/CH12/EX12.9.1/12_9_1.sce
new file mode 100755
index 000000000..316e96b6d
--- /dev/null
+++ b/752/CH12/EX12.9.1/12_9_1.sce
@@ -0,0 +1,8 @@
+clc;
+//page no 435
+//problem no 12.9.1
+ENR=10;// energy to noise density ratio
+Pbe1=1/2 * erfc(sqrt(ENR/2));
+disp(Pbe1,'a)The bit error probability');
+Pbe2=1/2 * %e^-(ENR/2);
+disp(Pbe2,'b)The bit error probability'); \ No newline at end of file
diff --git a/752/CH13/EX13.10.1/13_10_1.sce b/752/CH13/EX13.10.1/13_10_1.sce
new file mode 100755
index 000000000..049c93798
--- /dev/null
+++ b/752/CH13/EX13.10.1/13_10_1.sce
@@ -0,0 +1,21 @@
+clc;
+//page no 485
+//prob no. 13.10.1
+// Measurements on a 50 ohm slotted line gave
+Z0=50;//measured in ohm
+VSWR=2.0;
+d=0.2;//distance from load to first minimum
+T=(VSWR-1)/(VSWR+1);
+pi=180;
+Ql=pi*(4*0.2-1);
+// using Euler's identity
+e=cosd(Ql)+%i*sind(Ql);// expansion for e^(jQl);
+a=T*e;
+//Load impedance is given as
+ZL=Z0*(1+a)/(1-a);
+disp('ohm',real(ZL),'a) The equivalent series resistance is');
+disp('ohm',imag(ZL),'The equivalent series reactance is');
+disp('The minus sign indicate the capacitive reactance');
+Yl=1/ZL;
+disp('ohm',1/real(Yl),'b) The equivalent parallel resistance is');
+disp('ohm',1/imag(Yl),'The equivalent parallel reactance is'); \ No newline at end of file
diff --git a/752/CH13/EX13.11.1/13_11_1.sce b/752/CH13/EX13.11.1/13_11_1.sce
new file mode 100755
index 000000000..90eb3e849
--- /dev/null
+++ b/752/CH13/EX13.11.1/13_11_1.sce
@@ -0,0 +1,14 @@
+clc;
+//page no 488
+//prob no. 13.11.1
+d=0.1;//length of 50ohm short-circuited line
+Z0=50;//in ohm
+f=500*10^6;//freq in Hz
+pi=180;
+Bl=2*pi*d;
+//a)Determination of equivalent inductive reactance
+Z=%i*Z0*tand(Bl);
+disp('ohm','i',Z,'The equivalent inductive reactance is');
+//b)Determination of equivalent inductance
+L_eq=Z/(2*%pi*f);
+disp('nH',L_eq*10^9,'The equivalent inductance is'); \ No newline at end of file
diff --git a/752/CH13/EX13.17.1/13_17_1.sce b/752/CH13/EX13.17.1/13_17_1.sce
new file mode 100755
index 000000000..ea4310932
--- /dev/null
+++ b/752/CH13/EX13.17.1/13_17_1.sce
@@ -0,0 +1,14 @@
+clc;
+//page no 513
+//prob no. 13.17.1
+VSWR=2;l_min=0.2;Z0=50;
+Ql=((4*l_min )- 1)*%pi;
+tl=(VSWR-1)/(VSWR+1);
+Tl=tl*%e^(%i*Ql);
+Zl=Z0*(1+Tl)/(1-Tl);
+disp('ohm',real(Zl),'a) The equivalent series resistance is');
+disp('ohm',imag(Zl),'The equivalent series reactance is');
+disp('The minus sign indicate the capacitive reactance');
+Yl=1/Zl;
+disp('ohm',1/real(Yl),'b) The equivalent parallel resistance is');
+disp('ohm',1/imag(Yl),'The equivalent parallel reactance is'); \ No newline at end of file
diff --git a/752/CH13/EX13.17.2/13_17_2.sce b/752/CH13/EX13.17.2/13_17_2.sce
new file mode 100755
index 000000000..7d71dea78
--- /dev/null
+++ b/752/CH13/EX13.17.2/13_17_2.sce
@@ -0,0 +1,18 @@
+clc;
+//page no 514
+//prob no. 13.17.2
+// A transmission line is terminated with
+ZL=30-(%i*23);
+l=0.5;//// length of line in m
+Z0=50;//characteristic impedance in ohm
+wl=0.45;//wavelength on the line in m
+B=2*%pi/wl;
+Tl=(ZL-Z0)/(ZL+Z0)
+VI=1;//reference voltage in volt
+VR=VI*Tl;
+Vi=VI*%e^(%i*B*l);
+Vr=VR*%e^-(%i*B*l);
+V=Vi+Vr;
+I=(Vi-Vr)/Z0;
+Z=V/I;
+disp('ohm',Z,'The input impedance is'); \ No newline at end of file
diff --git a/752/CH13/EX13.17.3/13_17_3.sce b/752/CH13/EX13.17.3/13_17_3.sce
new file mode 100755
index 000000000..1af1eec29
--- /dev/null
+++ b/752/CH13/EX13.17.3/13_17_3.sce
@@ -0,0 +1,22 @@
+clc;
+//page no 515
+//prob no. 13.17.3
+Z0=600;Zl=73;//in ohm
+F=0.9;
+QF=(2*%pi*F)/4;
+//For matching, the effective load impedance on the main line must equal the characteristic impedance of the mail line
+Zl1=Zl;
+Z01=sqrt(Zl1*Zl);
+Tl=(Zl-Z01)/(Zl+Z01);
+VI=1;//reference voltage
+Vi=VI*%e^(%i*QF);
+Vr=Tl*VI*%e^-(%i*QF);
+V_in=Vi+Vr;
+I_in=(Vi-Vr)/Z01;
+Z_in=V_in/I_in;
+disp('ohm',Z_in,'The input impedance is');
+//the voltage reflection coeff is
+TL_F=(Z_in-Z0)/(Z_in+Z0);
+//the VSWr is given as
+VSWR_F=(1+TL_F)/(1-TL_F);
+disp(VSWR_F,'The VSWR is'); \ No newline at end of file
diff --git a/752/CH13/EX13.5.2/13_5_2.sce b/752/CH13/EX13.5.2/13_5_2.sce
new file mode 100755
index 000000000..18cdbde24
--- /dev/null
+++ b/752/CH13/EX13.5.2/13_5_2.sce
@@ -0,0 +1,12 @@
+clc;
+//page no 475
+//prob no. 13.5.2
+// The attenuation coeff is 0.0006 N/m
+a=0.0006;//The attenuation coeff in N/m
+//a)Determinaion of the attenuation coeff in dB/m
+a_dB=8.686*a;
+disp('dB/m',a_dB,'The attenuation coeff is');
+//b) Determination of attenuation coeff in dB/mile
+k=1609;//conversion coeff for meter to mile
+a_dB_mile=k*a_dB;
+disp('dB/mile',a_dB_mile,'The attenuation coeff is'); \ No newline at end of file
diff --git a/752/CH14/EX14.2.1/14_2_1.sce b/752/CH14/EX14.2.1/14_2_1.sce
new file mode 100755
index 000000000..f41cae945
--- /dev/null
+++ b/752/CH14/EX14.2.1/14_2_1.sce
@@ -0,0 +1,22 @@
+clc;
+//page no 524
+//prob no. 14.2.1
+// A rectangular waveguide has a broad wall dimension as a=0.900 in. Therefore
+a=2.286;//in cm
+wl_c=2*a*10^-2;//in m
+c=3*10^8;
+wl=c/10^10;//in m
+if(wl_c >wl)
+ disp('i)TE10 wave will propogate');
+else
+ disp('i)TE10 wave will not propogate');
+end
+//determination of gide wl
+wl_g=wl/(sqrt(1-(wl/wl_c)^2));
+disp('cm',wl_g*10^2,'Guide wavelength is');
+//determination of phase velocity
+vp=c*wl_g/wl;
+disp('m/s',vp,'Phase velocity is');
+//determination of group velocity
+vg=c*wl/wl_g;
+disp('m/s',vg,'Group velocity is'); \ No newline at end of file
diff --git a/752/CH15/EX15.2.1/15_2_1.sce b/752/CH15/EX15.2.1/15_2_1.sce
new file mode 100755
index 000000000..41f9c81d0
--- /dev/null
+++ b/752/CH15/EX15.2.1/15_2_1.sce
@@ -0,0 +1,18 @@
+clc;
+//page no 538
+//prob no. 15.2.1
+// satellite communication system is given
+ht=36000;//height of satellite in km
+f=4000;//freq used in MHz
+Gt=15;//transmitting antenna gain
+Gr=45;//receiving antenna gain
+// A) Determination of free-space transmission loss
+L=32.5+20*log10(ht)+20*log10(f);
+disp('dB',L,'The free-space transmission loss is');
+// B) Determination of received power Pr
+Pt=200;//transmitted power in watt
+Pr_Pt=Gt+Gr-L;//power ration in dB
+Pr_Pt_watt=10^(Pr_Pt/10);//power ratio in watts
+//Therefore
+Pr=Pt*Pr_Pt_watt;
+disp('watts',Pr,'The received power'); \ No newline at end of file
diff --git a/752/CH15/EX15.2.2/15_2_2.sce b/752/CH15/EX15.2.2/15_2_2.sce
new file mode 100755
index 000000000..9b34b849f
--- /dev/null
+++ b/752/CH15/EX15.2.2/15_2_2.sce
@@ -0,0 +1,10 @@
+clc;
+//page no 539
+//prob no. 15.2.2
+// In the given problemhalf dipole antenna is given
+Pr=10;//radiated power in watt
+f=150;//freq used in MHz
+d2=50;//distance of dipole in km
+//we know for the half dipole the maximum gain is 1.64:1,and the effectie length is wl/pi. Therefore open-ckt voltage induced is given as
+Vs=sqrt(30*Pr*1.64)/(d2*10^3)*2/%pi;
+disp('uV',Vs*10^6,'The open-ckt voltage induced is '); \ No newline at end of file
diff --git a/752/CH15/EX15.3.1/15_3_1.sce b/752/CH15/EX15.3.1/15_3_1.sce
new file mode 100755
index 000000000..30220a089
--- /dev/null
+++ b/752/CH15/EX15.3.1/15_3_1.sce
@@ -0,0 +1,15 @@
+clc;
+//page no 545
+//prob no. 15.3.1
+// VHF mobile radio system is given
+Pt=100;//transmitted power
+f=150;//freq used in MHz
+d1=20;//height of transmitting antenna in m
+Gt=1.64;//transmitting antenna gain
+ht=2;//height of receiving antenna in m
+d2=40;// distance in km
+wl=c/(f*10^6);
+E0=sqrt(30*Pt*Gt)
+// Field strength at a receiving antenna is
+ER=(E0*4*%pi*d1*ht)/(wl*(d2*10^3)^2);
+disp('uV/m',ER*10^6,'Field strength at a receiving antenna is'); \ No newline at end of file
diff --git a/752/CH15/EX15.3.2/15_3_2.sce b/752/CH15/EX15.3.2/15_3_2.sce
new file mode 100755
index 000000000..c1c818602
--- /dev/null
+++ b/752/CH15/EX15.3.2/15_3_2.sce
@@ -0,0 +1,6 @@
+clc;
+//page no 548
+//prob no. 15.3.2
+ht1=100;ht2=60;//antenna heights in ft
+dmax_miles=sqrt(2*ht1)+sqrt(2*ht2);
+disp('miles',dmax_miles,'The maximum range is'); \ No newline at end of file
diff --git a/752/CH15/EX15.4.1/15_4_1.sce b/752/CH15/EX15.4.1/15_4_1.sce
new file mode 100755
index 000000000..31c8c1f4d
--- /dev/null
+++ b/752/CH15/EX15.4.1/15_4_1.sce
@@ -0,0 +1,13 @@
+clc;
+//page no 560
+//prob no. 15.4.1
+ht=200;//virtual height in km
+a=6370;//in km
+B_degree=20;
+B_rad=20*%pi/180;//angle of elevation in degree
+// The flat-earth approximation gives
+d=2*ht/tand(B_degree);
+disp('km',d,'d=');
+// By using radian measures for all angles
+d=2*a*(((%pi/2)-B_rad)-(asin(a*cosd(B_degree)/(a+ht))));
+disp('km',d,'d='); \ No newline at end of file
diff --git a/752/CH15/EX15.7.1/15_7_1.sce b/752/CH15/EX15.7.1/15_7_1.sce
new file mode 100755
index 000000000..12b60474a
--- /dev/null
+++ b/752/CH15/EX15.7.1/15_7_1.sce
@@ -0,0 +1,27 @@
+clc;
+//page no 574
+//prob no. 15.7.1
+// In this problem data regarding the sea water is given
+conductivity = 4;//measured in S/m
+rel_permittivity =80;
+u=4*%pi*10^-7;
+f1=100;//measured in Hz
+f2=10^6;//measured in Hz
+// A) first it is necessary to evaluate the ratio of conductivity/w*rel_permittivity
+w1=2*%pi*f1;
+r=conductivity/w1*rel_permittivity;
+//after the calculation this ratio is much greater than unity. Therefore we have to use following eq to calculate the attenuation coeff as
+a=sqrt(w1*conductivity*u/2);
+disp('N/m',a,'The attenuation coeff is');
+// By using the conversion factor 1N=8.686 dB
+a_dB=a*8.686;
+disp('dB/m',a_dB,'The attenuation coeff in dB/m is');
+// B)
+w2=2*%pi*f2;
+r=conductivity/w2*rel_permittivity;
+//after the calculation this ratio is much greater than unity. Therefore we have to use following eq to calculate the attenuation coeff as
+a=sqrt(w2*conductivity*u/2);
+disp('N/m',a,'The attenuation coeff is');
+// By using the conversion factor 1N=8.686 dB
+a_dB=a*8.686;
+disp('dB/m',a_dB,'The attenuation coeff in dB/m is'); \ No newline at end of file
diff --git a/752/CH16/EX16.19.1/16_19_1.sce b/752/CH16/EX16.19.1/16_19_1.sce
new file mode 100755
index 000000000..50d34c43d
--- /dev/null
+++ b/752/CH16/EX16.19.1/16_19_1.sce
@@ -0,0 +1,17 @@
+clc;
+//prob no. 16.19.1
+// Paraboloida reflector antenna is given with
+D=6;//reflector diameter in m
+n=0.65;//illumination effeciency
+f=10^10;//frequency of operation in Hz
+c=3*10^8;//velo of light in m/s
+wl=c/f;
+A=(%pi*D^2)/4;
+A_eff=n*A;
+disp('m^2',A_eff,'Effective area is');
+D0=4*%pi*A_eff/wl^2;
+disp(D0,'The directivity is');
+BW_dB=70*wl/D;
+disp('degree',BW_dB,'The -3dB beamwidth is');
+BW_null=2*BW_dB;
+disp('degree',BW_null,'The null beamwidth is'); \ No newline at end of file
diff --git a/752/CH16/EX16.7.2/16_7_2.sce b/752/CH16/EX16.7.2/16_7_2.sce
new file mode 100755
index 000000000..81aa8441c
--- /dev/null
+++ b/752/CH16/EX16.7.2/16_7_2.sce
@@ -0,0 +1,14 @@
+clc;
+//page no 590
+//prob no. 16.7.2
+//For the Hertzian dipole, the radiation pattern is described by g(x)=sin^2(x) and g(y)=1
+// Determination of -3dB beamwidth
+// from the polar diagram shown we have
+g_x=0.5;
+x=asind(sqrt(g_x));
+g_y=0.5;
+y1=asind(sqrt(g_y));
+y=y1+90;
+//Therefore
+z=y-x;
+disp('degree',z,'The -3dB beamwidth is'); \ No newline at end of file
diff --git a/752/CH16/EX16.9.1/16_9_1.sce b/752/CH16/EX16.9.1/16_9_1.sce
new file mode 100755
index 000000000..00f21d498
--- /dev/null
+++ b/752/CH16/EX16.9.1/16_9_1.sce
@@ -0,0 +1,13 @@
+clc;
+//prob no. 16.9.1
+//Half dipole antenna is given with I=Io*cos(Bl) where l=0
+//The physical length of the antenna is wl/2
+//consider wl=unity and current Io=unity
+Io=1;
+wl=1;
+phy_length=wl/2;
+I_av=2*Io/%pi;
+//Thus area is given as
+Area=I_av*phy_length;
+// From the above eq l_effective is given as
+disp('l_eff= wl/pi'); \ No newline at end of file
diff --git a/752/CH17/EX17.1.1/17_1_1.sce b/752/CH17/EX17.1.1/17_1_1.sce
new file mode 100755
index 000000000..864c60066
--- /dev/null
+++ b/752/CH17/EX17.1.1/17_1_1.sce
@@ -0,0 +1,20 @@
+clc;
+//page no 641
+//problem no 17.1.1
+//a)Determination of max gain1
+FTL=50;M=12;
+NFL=2*FTL;NFLG=(NFL-M);
+G_max1=NFLG/2;
+disp('dB',G_max1,'a)The max gain is');
+//b)Determination of max gain2
+IL=3;RLW=20;RLE=40;
+NL=(4*IL)+RLW+RLE;
+NLG=(NL-M);
+G_max2=NLG/2;
+disp('dB',G_max2,'The max gain is');
+//c)Determination of amplr gain
+LT=15;OM=6;
+OLW=(RLW-LT)/2;
+OLE=(RLE-LT)/2;
+A=OM+OLW+OLE+(2*IL);
+disp('dB',A,'The amplr gain is'); \ No newline at end of file
diff --git a/752/CH18/EX18.2.1/18_2_1.sce b/752/CH18/EX18.2.1/18_2_1.sce
new file mode 100755
index 000000000..ef64b0e9e
--- /dev/null
+++ b/752/CH18/EX18.2.1/18_2_1.sce
@@ -0,0 +1,9 @@
+clc;
+// page no 671
+// prob no 18_2_1
+//A drum of facsimile machine with diameter=70.4mm & scanning pitch=0.2mm/scan
+D=70.4;P=0.2;
+//Determination of index of co-operation
+IOC_CCITT=D/P;
+IOC_IEEE=IOC_CCITT*(%pi);
+disp(IOC_IEEE,'The index of co-operation is'); \ No newline at end of file
diff --git a/752/CH18/EX18.2.2/18_2_2.sce b/752/CH18/EX18.2.2/18_2_2.sce
new file mode 100755
index 000000000..8bb8d7a4e
--- /dev/null
+++ b/752/CH18/EX18.2.2/18_2_2.sce
@@ -0,0 +1,18 @@
+clc;
+// page no 676
+// prob no 18_2_2
+//A drum scanner in eg.18.2.1 with pitch=0.26mm/line & diameter=68.4mm & drum rotate at 120rpm & scans lines=1075
+D=68.4;P=0.26;rpm=120;n=1075;
+//Determination of no. of pixels scan
+Npx=(%pi)*(D/P);
+disp('pixels/line',Npx,'The no. of pixels in scan line is');
+//Determination of scan rate
+Rs=rpm/60;
+disp('lines/sec',Rs,'The scan rate is');
+//Determination of pixel rate is
+Rpx=Npx*Rs;
+disp('pixels/sec',Rpx,'The pixel rate is');
+f_max=Rpx/2;
+//Determination of document Tx time
+td=n/(60*Rs);
+disp('min',td,'The document Transmission time is'); \ No newline at end of file
diff --git a/752/CH18/EX18.3.1/18_3_1.sce b/752/CH18/EX18.3.1/18_3_1.sce
new file mode 100755
index 000000000..03dfc4d47
--- /dev/null
+++ b/752/CH18/EX18.3.1/18_3_1.sce
@@ -0,0 +1,14 @@
+clc;
+//page no 693
+//prob no. 18.3.1
+a=(4/3);//aspect ratio
+N=525;//no. of line periods per frame
+Ns=40;//no. of suppressed lines
+//Determination of no. of pixel periods in line period
+Nv=N-Ns;
+disp('lines',Nv,'The no. of pixel periods in line period is ');
+//Determination of picture height and width
+Nh=a*Nv;
+disp('pixels',Nh,'The picture height is');
+Nl=(Nh/0.835);
+disp('pixels',Nl,'The picture length is'); \ No newline at end of file
diff --git a/752/CH18/EX18.3.2/18_3_2.sce b/752/CH18/EX18.3.2/18_3_2.sce
new file mode 100755
index 000000000..63a447b15
--- /dev/null
+++ b/752/CH18/EX18.3.2/18_3_2.sce
@@ -0,0 +1,13 @@
+clc;
+//page no 694
+//prob no. 18.3.2
+//A TV system with
+N=525;P=30;
+//Determination of horizontal and vertical synchhronization freq.
+fh=N*P;
+disp('Hz',fh,'the horizontal freq. is ');
+fv=2*P;
+disp('Hz',fv,'the vertical freq. is ');
+//Determination of time reqd to scan one line
+Th=(1/fh);
+disp('sec',Th,'the time reqd to scan one line is ');
diff --git a/752/CH18/EX18.3.3/18_3_3.sce b/752/CH18/EX18.3.3/18_3_3.sce
new file mode 100755
index 000000000..ed231c8c8
--- /dev/null
+++ b/752/CH18/EX18.3.3/18_3_3.sce
@@ -0,0 +1,9 @@
+clc;
+//page no 695
+//prob no. 18.3.3
+//U.S. NTSC is given
+//refer example 18.3.2
+fh=15750;Nl=775;
+//Determination of video bandwidth
+Bv=0.35*fh*Nl;
+disp('Hz',Bv,'the band width is');
diff --git a/752/CH18/EX18.7.1/18_7_1.sce b/752/CH18/EX18.7.1/18_7_1.sce
new file mode 100755
index 000000000..211e24439
--- /dev/null
+++ b/752/CH18/EX18.7.1/18_7_1.sce
@@ -0,0 +1,14 @@
+clc;
+//page no 706
+//prob no. 18.7.1
+//refer example 18.3.1
+a=4/3;//aspect ratio
+D=48.26*10^-2;//CRT tube diagonal
+Nh=647;
+H=sqrt((a^2)*(D^2)/(1+a^2));
+//Determination of viewing angle & minimum dist.
+w=H/Nh;
+theta=Nh*(1/60);//As each pixel subtend 1 minute of arc
+disp('degree',theta,'The viewing angle is');
+X=H/(2*tand(theta/2));
+disp('m',X,'The min. viewing dist is'); \ No newline at end of file
diff --git a/752/CH18/EX18.7.2/18_7_2.sce b/752/CH18/EX18.7.2/18_7_2.sce
new file mode 100755
index 000000000..a0f54343a
--- /dev/null
+++ b/752/CH18/EX18.7.2/18_7_2.sce
@@ -0,0 +1,13 @@
+clc;
+//page no 707
+//prob no. 18.7.2
+//HDTV system is given
+//Refer example 18.7.1
+a=16/9;D=1.40;Nh=1840;//Assuming square pixel
+H=sqrt((a^2)*(D^2)/(1+a^2));
+//Determination of viewing angle
+theta=Nh*(1/60);
+disp('degree',theta,'The viewing angle is');
+//Determination of viewing dist
+X=H/(2*tand(theta/2));
+disp('m',X,'The viewing dist is'); \ No newline at end of file
diff --git a/752/CH19/EX19.14.1/19_14_1.sce b/752/CH19/EX19.14.1/19_14_1.sce
new file mode 100755
index 000000000..6716d48bb
--- /dev/null
+++ b/752/CH19/EX19.14.1/19_14_1.sce
@@ -0,0 +1,11 @@
+clc;
+//page no 737
+//problem no 19.14.1
+//A high power amplr
+P_HPA=600;TFL_dB=1.5;G_dB_ES=50;RFL_dB=1;GTR_dB_SAT=-8;FSL_dB=200;AML_dB=0.5;PL_dB=0.5;AA_dB=1;
+//Determination of carrier to noise ratio
+P_dB_HPA=10*log10(P_HPA/1);
+EIRP_dB=P_dB_HPA-TFL_dB+G_dB_ES;
+TPL_dB=FSL_dB+AML_dB+PL_dB+AA_dB;
+CNoR_dB=EIRP_dB-TPL_dB-RFL_dB+GTR_dB_SAT+228.6;
+disp(CNoR_dB,'The carrier to noise ratio in dB is'); \ No newline at end of file
diff --git a/752/CH19/EX19.14.2/19_14_2.sce b/752/CH19/EX19.14.2/19_14_2.sce
new file mode 100755
index 000000000..be40b2af0
--- /dev/null
+++ b/752/CH19/EX19.14.2/19_14_2.sce
@@ -0,0 +1,9 @@
+clc;
+//page no 739
+//problem no 19.14.2
+f=14*10^9;BO_dB=10;GTR_dB_SAT=3;RFL_dB=1;phi_dB=-98;c=3*10^8;
+//Determination of carrier to noise ratio
+wav=c/f;
+Ao_dB=10*log10((wav^2)/(4*(%pi)*1));
+CNo_dB=phi_dB-BO_dB+GTR_dB_SAT-RFL_dB+Ao_dB+228.6;
+disp(CNo_dB,'The carrier to noise ratio is'); \ No newline at end of file
diff --git a/752/CH19/EX19.16.1/19_16_1.sce b/752/CH19/EX19.16.1/19_16_1.sce
new file mode 100755
index 000000000..e2cbd088f
--- /dev/null
+++ b/752/CH19/EX19.16.1/19_16_1.sce
@@ -0,0 +1,10 @@
+clc;
+//page no
+//problem no 19.16.1
+//Determination of overall C/N
+CNo_dB_U=88;CNo_dB_D=78;
+NoC_U=10^(-CNo_dB_U/10);
+NoC_D=10^(-CNo_dB_D/10);
+NoC=NoC_U+NoC_D;
+CNo_dB=10*log10(1/NoC);
+disp(CNo_dB,'The overall carrier to noise ratio is'); \ No newline at end of file
diff --git a/752/CH19/EX19.17.1/19_17_1.sce b/752/CH19/EX19.17.1/19_17_1.sce
new file mode 100755
index 000000000..3119fa7bc
--- /dev/null
+++ b/752/CH19/EX19.17.1/19_17_1.sce
@@ -0,0 +1,11 @@
+clc;
+// page no 742
+// prob no 19.17.1
+// A digital satellite link is given with following specification
+Eb_N0=9.6;//ratio expessed in dB
+Rb=1.544*10^6;//bit rate expessed in bps
+// The bit rate in dB relative to 1bps is
+R_dB_b=10*log10(Rb) ;
+//The required CN0 ratio is
+CNo_db=Eb_N0+R_dB_b;
+disp(CNo_db,'The ratio C/No is'); \ No newline at end of file
diff --git a/752/CH2/EX2.13.1/2_13_1.sce b/752/CH2/EX2.13.1/2_13_1.sce
new file mode 100755
index 000000000..bda139f1f
--- /dev/null
+++ b/752/CH2/EX2.13.1/2_13_1.sce
@@ -0,0 +1,9 @@
+clc;
+//page no 74
+//prob no. 2.13.1
+//A rectangular pulse with h=3V and width=2ms across 10 ohm resistor
+V=3;t=2*10^-3;R=10;
+//Determination of average energy
+P=(V^2)/R;//Instantaneous power
+U=P*t;
+disp('J',U,'The average energy is'); \ No newline at end of file
diff --git a/752/CH20/EX20.2.1/20_2_1.sce b/752/CH20/EX20.2.1/20_2_1.sce
new file mode 100755
index 000000000..08cc44cf9
--- /dev/null
+++ b/752/CH20/EX20.2.1/20_2_1.sce
@@ -0,0 +1,12 @@
+clc;
+// page no 753
+// prob no 20.2.1
+// An optic fiber is made of glass with following details
+n1=1.55;//RI of glass
+n2=1.51;//RI of clad
+// NA of the fibe is given as
+NA=n1*sqrt(2*(n1-n2)/n1);
+disp(NA,'The numerical aperture is');
+// Acceptance angle is given as
+acc_angle=asind(NA);
+disp(acc_angle,'The acceptance angle is'); \ No newline at end of file
diff --git a/752/CH20/EX20.2.2/20_2_2.sce b/752/CH20/EX20.2.2/20_2_2.sce
new file mode 100755
index 000000000..73015d6f1
--- /dev/null
+++ b/752/CH20/EX20.2.2/20_2_2.sce
@@ -0,0 +1,11 @@
+clc;
+//page no 761
+//prob no. 20.2.2
+//refer example 20.2.1
+d=50*10^-6;wav=0.8*10^-6;NA=0.352;
+//Determination of V number
+V=(%pi)*d*NA/wav
+disp(V,'the V no. is');
+//Determination of approximate number of modes
+N=(V^2)/2;
+disp(N,'the approximate no. of modes are ');
diff --git a/752/CH20/EX20.2.3/20_2_3.sce b/752/CH20/EX20.2.3/20_2_3.sce
new file mode 100755
index 000000000..966adc2cf
--- /dev/null
+++ b/752/CH20/EX20.2.3/20_2_3.sce
@@ -0,0 +1,8 @@
+clc;
+//page no 763
+//prob no. 20.2.3
+d=5*10^-6;wave=1.3*10^-6;NA=0.35;
+//Determination of V no.
+V=(%pi)*d*NA/wave;
+disp(V,'the v no. is' );
+disp('from the table it is seen that 6 modes have cut off v less than 4.23 '); \ No newline at end of file
diff --git a/752/CH20/EX20.2.4/20_2_4.sce b/752/CH20/EX20.2.4/20_2_4.sce
new file mode 100755
index 000000000..a0ddde207
--- /dev/null
+++ b/752/CH20/EX20.2.4/20_2_4.sce
@@ -0,0 +1,10 @@
+clc;
+//page no 762
+//prob no. 20.2.4
+//refer example 20.2.3
+a=2;//gradding profile index
+V=69.1;//normalized cutoff freq.
+N=2390;//number of modes supported as a step index fiber
+//Determination of no. of modes supported by graded index fiber
+N_a=(N*a)/(a+2);
+disp(N_a,'no. of modes supported by graded index fiber'); \ No newline at end of file
diff --git a/752/CH20/EX20.2.5/20_2_5.sce b/752/CH20/EX20.2.5/20_2_5.sce
new file mode 100755
index 000000000..a7cd6d816
--- /dev/null
+++ b/752/CH20/EX20.2.5/20_2_5.sce
@@ -0,0 +1,16 @@
+clc;
+//page no 763
+//prob no. 20.2.5
+d=10*10^-6;wav=1.3*10^-6;n1=1.55;V_max=2.405clc;
+//page no 762
+//prob no. 20.2.4
+NA_max=(V_max*wave)/(%pi*d);
+//a)Dtermination of maximum normailized index difference
+del=(1/2)*(NA/n1)^2;
+disp(del,'a)the normilized index difference is');
+//b)Determination of reffactive index of claddin glass
+n2=n1*(1-del);
+disp(n2,'b)cladding index required is');
+//Determination of the fiber acceptance angle
+theta_max=asind(NA);
+disp(theta_max,'the max acceptance angle is'); \ No newline at end of file
diff --git a/752/CH20/EX20.3.1/20_3_1.sce b/752/CH20/EX20.3.1/20_3_1.sce
new file mode 100755
index 000000000..6ffdad162
--- /dev/null
+++ b/752/CH20/EX20.3.1/20_3_1.sce
@@ -0,0 +1,11 @@
+clc;
+//page no
+//prob no. 20.3.1
+//A silica fiber with
+A_max=25;A1=2;A2=0.3;
+//a)Determination of repeater dist at 0.9um wavelength
+z1=A_max/A1;
+disp('km',z1,'a)the repeater dist for 0.9um wavelength is');
+//b)Determination of repeater dist at 1.5um wavelength
+z2=A_max/A2;
+disp('km',z2,'a)the repeater dist for 1.5um wavelength is'); \ No newline at end of file
diff --git a/752/CH20/EX20.4.1/20_4_1.sce b/752/CH20/EX20.4.1/20_4_1.sce
new file mode 100755
index 000000000..e879df63f
--- /dev/null
+++ b/752/CH20/EX20.4.1/20_4_1.sce
@@ -0,0 +1,11 @@
+clc;
+//page no 772
+//prob no. 20.4.1
+//Refer example 20.4.1
+n1=1.55;del=0.0258;l=12.5;z=1000;c=3*10^8;
+//a)Determination of intermodal dispersion
+del_per_km=(n1*z*del)/((1-del)*c);
+disp('s/km',del_per_km,'the intermodal dispersion is');
+//b)Determination of intermodal dispersion for l=12.5
+del_l=del_per_km*l/1000;
+disp('s',del_l,'the intermodal dispertion for l=12.5 is'); \ No newline at end of file
diff --git a/752/CH20/EX20.4.2/20_4_2.sce b/752/CH20/EX20.4.2/20_4_2.sce
new file mode 100755
index 000000000..46b603ac1
--- /dev/null
+++ b/752/CH20/EX20.4.2/20_4_2.sce
@@ -0,0 +1,9 @@
+clc;
+//page no 773
+//prob no. 20.4.2
+//Refer example 20.4.1
+n1=1.55;del=0.0258;z=1000;c=3*10^8;z_disp=12.5;
+del_graded=(n1*z*del^2)/(8*c);
+//Determination of intermodal dispersion
+del_total=del_graded*z_disp;
+disp('sec',del_total,'the intermodal dispersion is'); \ No newline at end of file
diff --git a/752/CH20/EX20.4.3/20_4_3.sce b/752/CH20/EX20.4.3/20_4_3.sce
new file mode 100755
index 000000000..dc6d89b95
--- /dev/null
+++ b/752/CH20/EX20.4.3/20_4_3.sce
@@ -0,0 +1,9 @@
+clc;
+//page no 774
+//prob no. 20.4.3
+//Refer example 20.4.1
+wav_0=0.8*10^-6;Dm=-0.15;wav_3=1.5;z=12.5;
+del_t=Dm*wav_3;
+//Determination of total material dispersion
+del_md=del_t*z;
+disp('ns',del_md,'The total material dispersion is'); \ No newline at end of file
diff --git a/752/CH20/EX20.4.4/20_4_4.sce b/752/CH20/EX20.4.4/20_4_4.sce
new file mode 100755
index 000000000..41811cbfc
--- /dev/null
+++ b/752/CH20/EX20.4.4/20_4_4.sce
@@ -0,0 +1,6 @@
+clc;
+//page no 775
+//prob no. 20.4.4
+Dm=6.6;z=12.5;del_3=6;
+del_wg=Dm*z*del_3;
+disp('ps',del_wg,'Expected waveguide dispersion is'); \ No newline at end of file
diff --git a/752/CH20/EX20.4.5/20_4_5.sce b/752/CH20/EX20.4.5/20_4_5.sce
new file mode 100755
index 000000000..12cbe798e
--- /dev/null
+++ b/752/CH20/EX20.4.5/20_4_5.sce
@@ -0,0 +1,10 @@
+clc;
+//page no 776
+//prob no. 20.4.5
+del_imd=0;del_md=2.81;del_wgd=0.495;t_w=2.5;
+del_tot=((del_imd^2)+(del_md^2)+(del_wgd^2))^(1/2);
+disp('ns',del_tot,'The total dispersion is');
+t_r=((t_w^2)+(del_tot^2))^(1/2)
+//Determination of max allowed bit rate
+B=(1000/(2*t_r));
+disp('Mbps',B,'The max allowed bit rate is'); \ No newline at end of file
diff --git a/752/CH20/EX20.4.6/20_4_6.sce b/752/CH20/EX20.4.6/20_4_6.sce
new file mode 100755
index 000000000..5f0527a2f
--- /dev/null
+++ b/752/CH20/EX20.4.6/20_4_6.sce
@@ -0,0 +1,11 @@
+clc;
+//page no 778
+//prob no. 20.4.6
+//A multimode step index fiber
+del_t=4;B=10;
+//a)Determination of BW distance product
+BDP=1/(2*del_t);
+disp('Mbps-km',BDP,'a)The BW distance product for fiber is');
+//b)Determiation of dispersion limited length
+z_max_disp=BDP/(B*10^-3);
+disp('km',z_max_disp,'b)The disp limited length for a fiber is');
diff --git a/752/CH20/EX20.5.1/20_5_1.sce b/752/CH20/EX20.5.1/20_5_1.sce
new file mode 100755
index 000000000..7a15b68b2
--- /dev/null
+++ b/752/CH20/EX20.5.1/20_5_1.sce
@@ -0,0 +1,18 @@
+clc;
+//page no 780
+//prob no. 20.5.1
+//3 semiconductor diodes are given
+E1=1.9;E2=1.46;E3=0.954;eV=1.9;//All in eV
+c=3*10^8;//speed of light
+//a)Determination of wavelength and freq for E1=1.9
+wav1=1.241/E1;f1=c/(wav1*10^-6);
+disp('um',wav1,'a)i)the wavelength is');
+disp('Hz',f1,'a)ii)the freq is');
+//b)Determination of wavelength and freq for E2=1.46
+wav2=1.241/E2;f2=c/(wav2*10^-6);
+disp('um',wav2,'b)i)the wavelength is');
+disp('Hz',f2,'b)ii)the freq is');
+//c)Determination of wavelength and freq for E3=0.945
+wav3=1.241/E3;f3=c/(wav3*10^-6);
+disp('um',wav3,'c)i)the wavelength is');
+disp('Hz',f3,'c)ii)the freq is');
diff --git a/752/CH20/EX20.8.1/20_8_1.sce b/752/CH20/EX20.8.1/20_8_1.sce
new file mode 100755
index 000000000..da1cdd3ff
--- /dev/null
+++ b/752/CH20/EX20.8.1/20_8_1.sce
@@ -0,0 +1,14 @@
+clc;
+//page no 799
+//prob no. 20.8.1
+//A fiber link is given
+pt=0;pr=-57;Nc=2;BER=10^-9;N=5;Lpt=6;Lpr=6;Lc=1;Ls=0.5;Lf=2;M=5;del_t=0.505;B=35;Ns=5;
+//a)Determination of loss-limited fiber length
+z=(pt-pr-M-(Nc*Lc)-(Ns*Ls)-Lpt-Lpr)/Lf;
+disp('km',z,'a)the loss-limited fiber is');
+//b)Determination of max BW for loss-limited fiber length
+B_max=1/(5*del_t*z);
+disp('Gbps',B_max,'b)the max BW for loss-limited length is');
+//c)Determination of dispersion-limited length
+z_disp=1000/(5*del_t*B);
+disp('km',z_disp,'the dispertion limited length is'); \ No newline at end of file
diff --git a/752/CH4/EX4.11.1/4_11_1.sce b/752/CH4/EX4.11.1/4_11_1.sce
new file mode 100755
index 000000000..145dbbaa5
--- /dev/null
+++ b/752/CH4/EX4.11.1/4_11_1.sce
@@ -0,0 +1,30 @@
+clc;
+// page no 135
+// prob no 4_11_1
+//An amplifier is given
+Rn=300;//Equivalent noise resistance
+Ieq=5*10^-6;//Equivalent noise current is 5 uA
+Rs=150;//Amplifier fed from 150 ohm,10 uV rms sinusoidal source
+Vs=10*10^-6;
+Bn=10*10^6;//Noise BW is 10 MHz
+//Assume the following
+kT=4*10^-21;//k is Boltzman constant in J/K & T is room temp
+q=1.6*10^-19;//Charge on electron in coulombs
+//Determination of shot noise current
+Ina=(2*q*Ieq*Bn)^(1/2);
+disp('nA',Ina*(10^9)','The value of shot noise current Ina is ');
+//Noise voltage developed by this across source resistance is
+V=Ina*Rs;
+disp('uV',Vs*(10^6)','The value of noise voltage across Rs is ');
+//Noise voltage developed across Rn resistance is
+Vna=(4*Rn*kT*Bn)^(1/2);
+disp('uV',Vna*(10^6)','The value of noise voltage across Rn is ');
+//Determination of thermal noise voltage from source
+Vns=(4*Rs*kT*Bn)^(1/2);
+disp('uV',Vns*(10^6)','The value of thermal noise voltage at Rs is');
+//Determination of total noise voltage at input
+Vn=(((V)^2)+((Vna)^2)+((Vns)^2))^(1/2)
+disp('uV',Vn*(10^6)','The value of total noise voltage Vn is ');
+//Determination of signal to noise ratio in dB
+SNR=20*(log10(Vs/Vn));
+disp('dB',SNR,'The value of signal to noise ratio is '); \ No newline at end of file
diff --git a/752/CH4/EX4.12.1/4_12_1.sce b/752/CH4/EX4.12.1/4_12_1.sce
new file mode 100755
index 000000000..b7275d84c
--- /dev/null
+++ b/752/CH4/EX4.12.1/4_12_1.sce
@@ -0,0 +1,10 @@
+clc;
+// page no 136
+// prob no 4_12_1
+//As shown in fig 4.12.1
+//Three identical links are given with for 1 link is SNR=60 dB
+SNR1=60;
+l=3;
+//Determination of output signal to noise ratio
+SNR=(SNR1)-10*log10(l);
+disp('dB',SNR,'The value of output signal to noise ratio is '); \ No newline at end of file
diff --git a/752/CH4/EX4.12.2/4_12_2.sce b/752/CH4/EX4.12.2/4_12_2.sce
new file mode 100755
index 000000000..7d3a19975
--- /dev/null
+++ b/752/CH4/EX4.12.2/4_12_2.sce
@@ -0,0 +1,18 @@
+clc;
+// page no 137
+// prob no 4_12_2
+//SNR for three links is given in which Ist two have SNR 60 db & IInd 40 dB
+SNRdB(1)=60;//SNR is 60 dB for Ist link
+SNRdB(2)=60;//SNR is 60 dB for IInd link
+SNRdB(3)=40;//SNR is 40 dB for IIIrd link
+//Determination of power in watt
+for i=1:3
+snr(i)=10^(-SNRdB(i)/10);
+end;
+//Determination of overall SNR
+for i=1:3
+SNR=snr(i);
+end;
+//Determination of total SNR in dB
+SNRdB=10*(-log10(SNR));
+disp('dB',SNRdB,'The value of output signal to noise ratio is '); \ No newline at end of file
diff --git a/752/CH4/EX4.13.1/4_13_1.sce b/752/CH4/EX4.13.1/4_13_1.sce
new file mode 100755
index 000000000..6ce520017
--- /dev/null
+++ b/752/CH4/EX4.13.1/4_13_1.sce
@@ -0,0 +1,9 @@
+clc;
+// page no 139
+// prob no 4_13_1
+//Noise fig. of an amplifier is 7 dB with input SNR=35 dB
+SNRin=35;//SNR at i/p of amplifier
+F=7;//Noise figure of an amplifier
+//Determination of output SNR
+SNRout=SNRin-F;
+disp('dB',SNRout,'The value of output signal to noise ratio is '); \ No newline at end of file
diff --git a/752/CH4/EX4.14.1/4_14_1.sce b/752/CH4/EX4.14.1/4_14_1.sce
new file mode 100755
index 000000000..a89392a03
--- /dev/null
+++ b/752/CH4/EX4.14.1/4_14_1.sce
@@ -0,0 +1,11 @@
+clc;
+// page no 140
+// prob no 4_14_1
+//Noise fig. of an amplifier is 13 dB with BW=1MHz
+f=13;//Noise figure of an amplifier
+Bn=1*10^6;
+kT=4*10^-21;//k is Boltzman constant in J/K & T is room temp
+F=10^(f/10);
+//Determination of equivalent amplifier input noise
+Pna=(F-1)*kT*Bn;
+disp('pW',Pna*10^12,'The value of input noise is'); \ No newline at end of file
diff --git a/752/CH4/EX4.15.1/4_15_1.sce b/752/CH4/EX4.15.1/4_15_1.sce
new file mode 100755
index 000000000..03ffeb20f
--- /dev/null
+++ b/752/CH4/EX4.15.1/4_15_1.sce
@@ -0,0 +1,16 @@
+clc;
+// page no 141
+// prob no 4_15_1
+//mixer with noise fig. 20dB preceded by amplifier with noise fig. 9dB is given
+f1=9;//Noise fig for amplifier
+f2=20;//Noise fig for mixer
+g=15;//power gain
+//Converting dB in power ratio
+F1=10^(f1/10);
+F2=10^(f2/10);
+G=10^(g/10);
+//Determination of overall noise fig. reffered at i/p
+F=F1+(F2-1)/G;
+//converting in dB
+FdB=10*log10(F);
+disp('dB',FdB,'The overall noise fig is'); \ No newline at end of file
diff --git a/752/CH4/EX4.17.1/4_17_1.sce b/752/CH4/EX4.17.1/4_17_1.sce
new file mode 100755
index 000000000..fe2ef8877
--- /dev/null
+++ b/752/CH4/EX4.17.1/4_17_1.sce
@@ -0,0 +1,9 @@
+clc;
+// page no 143
+// prob no 4_17_1
+//An attenuator is given with insertion loss of 6 dB
+//Noise fig is equivalent to insertion loss
+F=6;//Noise fig.=6 dB
+//Determination of noise factor
+Fn=10^(6/10);
+disp(Fn,'The value of noise factor is '); \ No newline at end of file
diff --git a/752/CH4/EX4.18.1/4_18_1.sce b/752/CH4/EX4.18.1/4_18_1.sce
new file mode 100755
index 000000000..d10221597
--- /dev/null
+++ b/752/CH4/EX4.18.1/4_18_1.sce
@@ -0,0 +1,17 @@
+clc;
+// page no 144
+// prob no 4_18_1
+//A receiver with noise fig. 12dB fed by low noise amplr with gain 50 dB with noise temp of 90 k
+f=12;
+Tm=290;//Room temp value
+T=90;
+g=50;
+//calculating power ratio
+F=10^(f/10);
+G=10^(g/10);
+//Determination of equivalent noise at room temp
+Tem=(F-1)*Tm;
+disp('K',Tem,'The value of equivalent noise at room temp is');
+//Determination of equivalent noise at 90 k temp
+Te=T+(Tem/G);
+disp('K',Te,'The value of equivalent noise at noise temp=90 is'); \ No newline at end of file
diff --git a/752/CH4/EX4.19.1/4_19_1.sce b/752/CH4/EX4.19.1/4_19_1.sce
new file mode 100755
index 000000000..156884346
--- /dev/null
+++ b/752/CH4/EX4.19.1/4_19_1.sce
@@ -0,0 +1,16 @@
+clc;
+// page no 146
+// prob no 4_19_1
+//An avalanche diode source is given with excess noise ratio is 14 dB
+enr=14;
+To=290;//Room temp in K
+y=9;//Y-factor is 9 dB
+//converting dB in power ratio
+ENR=10^(enr/10);
+Y=10^(y/10);
+//From def of ENR the hot temp is
+Th=To*(ENR+1);
+disp('K',Th,'The value of hot temp Th is ');
+//Determination of equivalent noise temp
+Te=(Th-(Y*To))/(Y-1);
+disp('K',Te,'The value of equivalent noise temp Te is '); \ No newline at end of file
diff --git a/752/CH4/EX4.2.1/4_2_1.sce b/752/CH4/EX4.2.1/4_2_1.sce
new file mode 100755
index 000000000..08bdb11a6
--- /dev/null
+++ b/752/CH4/EX4.2.1/4_2_1.sce
@@ -0,0 +1,14 @@
+clc;
+// page no 120
+// prob no 4_2_1
+//Resistor at room temp T=290 K with BW=1MHz and R=50 ohm
+T=290
+BW=1*10^6// Noise bandwidth in hertz
+k=1.38*10^-23 //Boltzman constant in J/K
+R=50
+//Determination of thermal noise power Pn
+Pn=k*T*BW;
+disp('W',Pn,+'The value of thernal noise power is');
+//Determination of RMS noise voltage
+En=(4*R*k*T*BW)^(1/2);
+disp('uV',En*(10^6),+'The value of RMS noise voltage is'); \ No newline at end of file
diff --git a/752/CH4/EX4.2.2/4_2_2.sce b/752/CH4/EX4.2.2/4_2_2.sce
new file mode 100755
index 000000000..d6e68af0f
--- /dev/null
+++ b/752/CH4/EX4.2.2/4_2_2.sce
@@ -0,0 +1,23 @@
+clc;
+// page no 122
+// prob no 4_2_2
+//Two resistor at room temp are given with BW=100KHz
+R1=20000
+R2=50000
+k=1.38*10^-23 //Boltzman constant in J/K
+T=290
+BW=100*10^3
+//Determination of thermal noise voltage for 20Kohm resistor
+En1=(4*R1*k*T*BW)^(1/2);
+disp('uV',En1*(10^6),+'a)i)The value of RMS noise voltage is');
+//Determination of thermal noise voltage for 50 kohm resistor
+En2=En1*(R2/R1)^(1/2);
+disp('uV',En2*(10^6),+'a)ii)The value of RMS noise voltage is');
+//Determination of thermal noise voltage for 20K & 50k resistor in series
+Rser=R1+R2// Series combination of R1 & R2
+En3=En1*(Rser/R1)^(1/2);
+disp('uV',En3*(10^6),+'b)The value of RMS noise voltage is');
+//Determination of thermal noise voltage for 20K & 50k resistor in parellel
+Rpar=(R1*R2)/(R1+R2)// parallel combination of R1 & R2
+En4=En1*(Rpar/R1)^(1/2);
+disp('uV',En4*(10^6),+'c)The value of RMS noise voltage is'); \ No newline at end of file
diff --git a/752/CH4/EX4.2.3/4_2_3.sce b/752/CH4/EX4.2.3/4_2_3.sce
new file mode 100755
index 000000000..9330e4184
--- /dev/null
+++ b/752/CH4/EX4.2.3/4_2_3.sce
@@ -0,0 +1,15 @@
+clc;
+// page no 128
+// prob no 4_2_3
+//Parallel tuned ckt tuned at resonant freq f=120 MHz
+f=120*10^6;
+c=25*10^-12;//capacitance of 12 pF
+Q=30;//Q-factor of the ckt is 30
+BW=10*10^3;//cahnnel BW of the receiver is 10 KHz
+k=1.38*10^-23 //Boltzman constant in J/K
+T=290;//Room temp
+//Determination of effective noise voltage Rd apearing at i/p at room temp
+ Rd=Q/(2*%pi*f*c);
+ disp('kohm',Rd/1000,'The value of Rd is ');
+ Vn=(4*Rd*k*T*BW)^(1/2);
+disp('uV',Vn*(10^6),'The value of effective noise voltage is'); \ No newline at end of file
diff --git a/752/CH4/EX4.3.1/4_3_1.sce b/752/CH4/EX4.3.1/4_3_1.sce
new file mode 100755
index 000000000..d68504c30
--- /dev/null
+++ b/752/CH4/EX4.3.1/4_3_1.sce
@@ -0,0 +1,10 @@
+clc;
+// page no 131
+// prob no 4_3_1
+//Direct current of 1 mA flowing across semiconductor junctn
+Idc=10^-3;
+Bn=10^6;//Effective noise BW=1 MHz
+q=1.6*10^-19;//Charge on electron in coulombs
+//Determination of noise component current In in DC current of Idc=1 mA
+In=(2*Idc*q*Bn)^(1/2);
+disp('nA',In*(10^9)','The value of noise current In is ') \ No newline at end of file
diff --git a/752/CH5/EX5.4.1/5_4_1.sce b/752/CH5/EX5.4.1/5_4_1.sce
new file mode 100755
index 000000000..cbc26efdb
--- /dev/null
+++ b/752/CH5/EX5.4.1/5_4_1.sce
@@ -0,0 +1,22 @@
+//page no 162
+// problem no 5.4.1
+//Resonating freq of a tuned ckt of a CE amplifier is 5MHz
+f=5*10^6;
+c=100*10^-12;//tuning capacitance in F
+Q=150;// Q-factor of the ckt
+Rl=5*10^3;//load resistance in ohm
+Rc=40*10^3;//o/p reistance of transistor
+Ic=500*10^-6;//transister collector current in A
+C=0.6*10^-12;//collector to base capacitance in F
+Vt=26*10^-3;//thermal voltage in V
+//transe conductance is given as
+gm=Ic/Vt;
+RD2=Q/(2*%pi*f*c);
+// At resonance the output admittance is purely conductive and is given as
+Yo=(1/Rc)+(1/RD2)+(1/Rl);
+//The voltage gain is given as
+Av=-(gm/Yo);
+disp(Av,'The voltage gain is');
+//The Millar capacitance is given as
+Cm=(1-Av)*C;
+disp('pF',Cm*10^12,'The Millar capacitance is'); \ No newline at end of file
diff --git a/752/CH5/EX5.4.2/5_4_2.sce b/752/CH5/EX5.4.2/5_4_2.sce
new file mode 100755
index 000000000..b07448f95
--- /dev/null
+++ b/752/CH5/EX5.4.2/5_4_2.sce
@@ -0,0 +1,29 @@
+clc;
+//page no 163
+// problem no 5.4.2
+//Resonating freq of a tuned ckt of a CE amplifier is 5MHz
+f=5*10^6;//in Hz
+w0=2*%pi*f;
+Q=100;//Q-factor of the ckt
+L=2*10^-6;//inductance expressed in H
+Rs=1000;//source resistance in ohm
+Ic=500*10^-6;//transister collector current in A
+Vt=26*10^-3;//thermal voltage in V
+hfe=200;
+C_be=10*10^-12;//in pF
+// refer to problem 5.4.1
+Av=78;
+Cm=47;
+gm=Ic/Vt;
+r_be=hfe/gm;
+// The dynamic resistance of the tuned ckt is
+RD1=Q*w0*L;
+//The effective dynamic conductance is
+RD1eff_1=(1/Rs)+(1/RD1)+(1/r_be);
+RD1_eff=1/RD1eff_1
+// Tha effective Q-factor is
+Qeff=RD1_eff/(w0*L);
+disp(Qeff,'The effective Q-factor is');
+// The voltage gain refered to source is
+Avs=RD1_eff*Av/Rs;
+disp(Avs,'The voltage gain is'); \ No newline at end of file
diff --git a/752/CH6/EX6.3.1/6_3_1.sce b/752/CH6/EX6.3.1/6_3_1.sce
new file mode 100755
index 000000000..cb90afabc
--- /dev/null
+++ b/752/CH6/EX6.3.1/6_3_1.sce
@@ -0,0 +1,20 @@
+clc;
+//page no 199
+// prob no 6.3.1
+// RC phase shift scillator
+// In the given problem small-signal o/p resistance Rc=40kohm
+// collector bias resistor, rc=10kohm,f=400 Hz;
+// all resistances are in Kohm and freq in Hz
+f=400;rc= 10; Rc= 40;
+// Minimum value of beta is given by Bomin= 23+(4*Ro/R)+(29*R/Ro)
+// For minimum beta Ro/R=2.7, we represent Ro/R=b
+b=2.7;
+Bomin=23+(4*b)+(29*1/b);
+disp(Bomin,'1.The minimum value of beta is');
+//Determination of R and C components
+//R0 is given by (rc*Rc)/(rc+Rc)
+R0=(rc*Rc)/(rc+Rc);
+R=2.7* R0;
+disp('Kohm',R,+'2.The value of resistor R=');
+c=1/(2*%pi*f*R*sqrt(6+(4*b)))*10^9;
+disp('pF',c,+'3.The value of capacitor is '); \ No newline at end of file
diff --git a/752/CH6/EX6.3.2/6_3_2.sce b/752/CH6/EX6.3.2/6_3_2.sce
new file mode 100755
index 000000000..4a42d5316
--- /dev/null
+++ b/752/CH6/EX6.3.2/6_3_2.sce
@@ -0,0 +1,10 @@
+clc;
+// page no 200
+// prob no 6.3.2
+// RC phase shift oscillator
+// all resistors are in Kohm
+f=800;R0=18;
+// R>>Ro should be chosen to minimize the effect of Ro on frequency. A number of values for R can be tried, and it will be found that R=100Kohm is reasonable.
+R=100;
+c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;// C in pF
+disp('pF',c,+'The value of capacitor is '); \ No newline at end of file
diff --git a/752/CH6/EX6.3.3/6_3_3.sce b/752/CH6/EX6.3.3/6_3_3.sce
new file mode 100755
index 000000000..b915f29d7
--- /dev/null
+++ b/752/CH6/EX6.3.3/6_3_3.sce
@@ -0,0 +1,15 @@
+clc;
+// page no 201
+// prob no 6_3_3
+// RC pase shift oscillator
+// All resistors are in Kohm
+f=1000; Ro=5;
+//Choose R>> R0 to minimize the effects of R0 on frequency. Select R=100kohm
+R=100;
+c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;
+disp('pF',c,+'The value of capacitor is ');
+// The required open -circuit voltage gain is
+Ao= 29+23*(Ro/R)+4*(Ro/R)^2;
+disp(Ao,'1.The required open -circuit voltage gain is');
+gm=Ao/Ro;
+disp('mS',gm,+'2.The value of gm is'); \ No newline at end of file
diff --git a/752/CH6/EX6.4.1/6_4_1.sce b/752/CH6/EX6.4.1/6_4_1.sce
new file mode 100755
index 000000000..35b38b022
--- /dev/null
+++ b/752/CH6/EX6.4.1/6_4_1.sce
@@ -0,0 +1,37 @@
+clc;
+// page no 205
+// prob no 6_4_1
+// colpitt's oscillator
+L=400*10^-6;// in H
+c1= 100;// in pF
+c2= 300;// in pF
+Q=200;
+Ro= 5*10^3;
+Bo=100;//beta value
+// The tuning capacitance is
+Cs=(c1*c2/(c1+c2));
+disp('pF',Cs,+'1.The value of capacitor is ');
+// the frequency of oscillation is obtained as
+f=1/(2*%pi*sqrt(L*Cs*10^-12));
+disp('Hz',f,'2.The frequency of oscillation is');
+// The dynamic impedence of the tuned circuit
+wo= 2*%pi *f;
+Rd=Q/(wo*Cs*10^-12);
+disp('ohm',Rd,+'3.The dynamic impedence of the tuned circuit');
+// The coil series resistance is
+r=wo*L/Q;
+disp('ohm',r,+'4.The coil series resistance is ');
+//The capacitor raio c= c1/c2=1/3, and therefore 1-c2/B0*c1 = 1 .
+// The starting value of gm is therefore given by
+c= c1/c2;
+gm=(1/Ro)*c +(c+3+2)*(1/Rd);
+disp('sec',gm,+'5.The value of gm is');
+// Assuming the input resistance is that of the transistor alone,
+R1=Bo/gm;
+disp('ohm',R1,+'6.The input resistance is');
+//The actual starting frequency is obtained from wo^2=(1/LCs)+(1/R1R2C1C2)
+wo2=1/((L*Cs*10^-12)+(1/R1*Ro*c1*c2*10^-12*10^-12));
+wo=sqrt(wo2);
+// Hence the frequency is
+f=wo/(2*%pi);
+disp('Hz',f,'7.The frequency of oscillation is'); \ No newline at end of file
diff --git a/752/CH6/EX6.6.1/6_6_1.sce b/752/CH6/EX6.6.1/6_6_1.sce
new file mode 100755
index 000000000..9d661ac06
--- /dev/null
+++ b/752/CH6/EX6.6.1/6_6_1.sce
@@ -0,0 +1,10 @@
+clc;
+// page no 211
+// prob no 6.6.1
+//In given problem zero bias capacitance co is 20pF
+Co=20;// in pF
+Vd=-7;// reverse bias voltage in volt
+//constant pottential of junction is 0.5
+a=0.5;// for abrupt junction
+Cd=Co/(1-(Vd/0.5))^a;
+disp('pF',Cd,+'The value of capacitor is '); \ No newline at end of file
diff --git a/752/CH6/EX6.6.2/6_6_2.sce b/752/CH6/EX6.6.2/6_6_2.sce
new file mode 100755
index 000000000..3bc7727f2
--- /dev/null
+++ b/752/CH6/EX6.6.2/6_6_2.sce
@@ -0,0 +1,22 @@
+clc;
+// page no 212
+// prob no 6.6.2
+//Voltage controlled Clapp oscillator
+// Capacitor is in pF and inductor in uH
+C1=300; C2=300; Cc=20; L=100;
+// A) With zero applied bias,the total tuning capacitor is
+Vd1=0;a=0.5;Co=20;
+Cd1=Co/(1-(Vd1/0.5))^a;
+Cs1=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd1));
+disp('pF',Cs1, +'1.The total tuning capacitor is');
+// The frequency of oscillation is
+f=1/(2*%pi*sqrt(L*10^-6*Cs1*10^-12));
+disp('Hz',f,'2.The frequency of oscillation is');
+// B) With a reverse bias of -7 v, the tuning capacitance becomes
+Vd2=-7;
+Cd2=Co/(1-(Vd2/0.5))^a;
+Cs2=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd2));
+disp('pF',Cs2, +'3.The total tuning capacitor is');
+// The frequency of oscillation is
+f=1/(2*%pi*sqrt(L*10^-6*Cs2*10^-12));
+disp('Hz',f,'4.The frequency of oscillation is'); \ No newline at end of file
diff --git a/752/CH7/EX7.3.1/7_3_1.sce b/752/CH7/EX7.3.1/7_3_1.sce
new file mode 100755
index 000000000..e460144a1
--- /dev/null
+++ b/752/CH7/EX7.3.1/7_3_1.sce
@@ -0,0 +1,18 @@
+clc;
+//page no 227
+//prob no. 7.3.1
+//An RF receiver tunes signal in 550-1600kHz with IF=455kHz
+fs_min=550*10^3;fs_max=1600*10^3;IF=455*10^3;
+//Determination of freq tuning ranges
+fo_min=fs_min+IF;
+fo_max=fs_max+IF;
+disp('Hz',fo_max,'fo_max=','Hz',fo_min,'fo_min=','The freq tuning range is');
+Rf=(fo_max)/(fo_min);//calculation of freq tuning range ratio
+disp(Rf,'Rf=','The tuning range ratio of oscillator is');
+Rc=Rf^2;//calculation of capacitance tuning range ratio
+disp(Rc,'Rc=','The capacitor tuning range ratio of oscillator is');
+//For RF section
+Rf1=fs_max/fs_min;
+disp(Rf1,'Rf=','The tuning range ratio of RF-ckt is');
+Rc1=Rf1^2;
+disp(Rc1,'Rc','The capacitor tuning range ratio of RF-ckt is'); \ No newline at end of file
diff --git a/752/CH7/EX7.4.1/7_4_1.sce b/752/CH7/EX7.4.1/7_4_1.sce
new file mode 100755
index 000000000..41f259a0e
--- /dev/null
+++ b/752/CH7/EX7.4.1/7_4_1.sce
@@ -0,0 +1,10 @@
+clc;
+//page no 230
+//prob no. 7.4.1
+//Refer example 7.3.1
+//2-tuning capacitor with max 350pF/section ^ capacitance ratio in eg. 7.3.1
+Rco=8.463;Rfo=2.909;Rcs=4.182;Rfo=2.045;fo_max=2055*10^3;fo_min=1005*10^3;
+Cs_max=350*10^-12;
+//For the RF section
+Cs_min=Cs_max/Rcs;
+disp('F',Cs_min,'The Cs_min is'); \ No newline at end of file
diff --git a/752/CH7/EX7.6.1/7_6_1.sce b/752/CH7/EX7.6.1/7_6_1.sce
new file mode 100755
index 000000000..35af4f8ba
--- /dev/null
+++ b/752/CH7/EX7.6.1/7_6_1.sce
@@ -0,0 +1,17 @@
+clc;
+//page no 234
+//prob no. 7.6.1
+// An AM broadcast receiver with following specifications is given
+IF=465;//IF in KHz
+fs=1000;//Tuning freq in KHz
+Q=50;//Quality factor
+// Oscillator freq fo is given as
+fo=fs+IF;
+// a) Image freq is given as
+fi=fo+IF;
+disp('KHz',fi,'Image freq is');
+y=fi/fs - fs/fi;
+// b) image rejection is given as
+Ar=1/sqrt(1+(y*Q)^2);
+Ar_dB=20*log10(Ar);
+disp('dB',Ar_dB,'Image rejection is'); \ No newline at end of file
diff --git a/752/CH7/EX7.7.1/7_7_1.sce b/752/CH7/EX7.7.1/7_7_1.sce
new file mode 100755
index 000000000..e5a4b93d5
--- /dev/null
+++ b/752/CH7/EX7.7.1/7_7_1.sce
@@ -0,0 +1,24 @@
+clc;
+//page no 236
+//prob no. 7.7.1
+// refer to example 7.3.1
+// A broadcast receiver is tuned to a signal with
+fs=950;//in KHz
+IF=455;//in KHz
+m=[1,2];
+n=[1,2];
+f0=fs+IF;
+disp('The sum of frequencies are');
+for i=1:1:2
+ for j=1:1:2
+fu1=n(j)/m(i) *f0 + 1/m(i) *IF;
+disp(fu1);
+end
+end
+disp('The difference of frequencies are');
+for i=1:1:2
+ for j=1:1:2
+fu2=n(j)/m(i) *f0 - 1/m(i) *IF;
+disp(fu2);
+end
+end \ No newline at end of file
diff --git a/752/CH8/EX8.11.1/8_11_1.sce b/752/CH8/EX8.11.1/8_11_1.sce
new file mode 100755
index 000000000..0abaa0e0f
--- /dev/null
+++ b/752/CH8/EX8.11.1/8_11_1.sce
@@ -0,0 +1,13 @@
+clc;
+//page no 274
+//prob no. 8.11.1
+//RC load ckt for diode detector with c=1000pF in paralel with R=10Kohm
+fm=10*10^3;//modulation freq
+c=1000*10^-12;R=10*10^3;
+Yp=(1/R)+((%i)*2*(%pi)*fm*c);//admittance of RC load
+disp(Yp);
+Zp=1/sqrt((real(Yp)^2)+(imag(Yp)^2));
+disp(Zp);
+//Determination of max modulation index
+m=Zp/R;
+disp(m,'The max modulation index is'); \ No newline at end of file
diff --git a/752/CH8/EX8.3.1/8_3_1.sce b/752/CH8/EX8.3.1/8_3_1.sce
new file mode 100755
index 000000000..a775d6a32
--- /dev/null
+++ b/752/CH8/EX8.3.1/8_3_1.sce
@@ -0,0 +1,14 @@
+clc;
+//page no 257
+//prob no. 8.3.1
+//A modulating signal with zero dc component & vpp=11,vcp=10 carrier peak voltage
+vpp=11;//peak to peak voltage of modulating signal
+vcp=10;//carrier peak voltage
+//Determination of modulation index
+E_max=vcp+(vpp/2);
+E_min=vcp-(vpp/2);
+m=(E_max-E_min)/(E_max+E_min);
+disp(m,'The modulation index is');
+//determination of kratio of side lengths
+L1_L2=E_max/E_min;
+disp(L1_L2,'The ratio of side lengths L1/L2 is'); \ No newline at end of file
diff --git a/752/CH8/EX8.5.1/8_5_1.sce b/752/CH8/EX8.5.1/8_5_1.sce
new file mode 100755
index 000000000..8c6f98743
--- /dev/null
+++ b/752/CH8/EX8.5.1/8_5_1.sce
@@ -0,0 +1,10 @@
+clc;
+//page no 260
+//prob no. 8.5.1
+//A carrier with fc=10MHz & vp=10V modulated with fm=5kHz & Vm=6V
+fc=10*10^6;//Carrier freq
+fm=5*10^3;//Modullating freq
+vp=10;vm=6;
+//Determination of modulation index
+m=vm/vp;
+disp(m,'The modulation index is'); \ No newline at end of file
diff --git a/752/CH8/EX8.7.1/8_7_1.sce b/752/CH8/EX8.7.1/8_7_1.sce
new file mode 100755
index 000000000..7e15e5cf9
--- /dev/null
+++ b/752/CH8/EX8.7.1/8_7_1.sce
@@ -0,0 +1,8 @@
+clc;
+//page no 263
+//prob no. 8.7.1
+//AM radio Tx=10A when unmodulated & 12A when modulated
+I=12;Ic=10;
+//Determination of modulation index
+m=sqrt(2*(((I/Ic)^2)-1));
+disp(m,'The modulation index is'); \ No newline at end of file
diff --git a/752/CH9/EX9.2/9_2.sce b/752/CH9/EX9.2/9_2.sce
new file mode 100755
index 000000000..cd4e4a1c0
--- /dev/null
+++ b/752/CH9/EX9.2/9_2.sce
@@ -0,0 +1,7 @@
+clc;
+// page no 349
+// prob no 9.2
+Nd=7; N_start=1; N_stop=1; N_parity=1;
+Nt= Nd + N_start+ N_stop + N_parity;
+efficiency=Nd/Nt *100;
+disp('%',efficiency,'The efficiency is'); \ No newline at end of file
diff --git a/752/CH9/EX9.6/9_6.sce b/752/CH9/EX9.6/9_6.sce
new file mode 100755
index 000000000..90ee7ed7d
--- /dev/null
+++ b/752/CH9/EX9.6/9_6.sce
@@ -0,0 +1,13 @@
+clc;
+// page no 358
+// prob no 9.6
+m=21;
+// The correct number of check bits is the smallest number that satisfy the equation 2^n >= m+n+1;
+for n=1:1:10 // we choose range of 1 to 10
+ a=m+n+1;
+ b=2^n;
+ if(b>=a)
+ disp(n,'hammming bits are required')
+ break;
+ end
+end \ No newline at end of file