summaryrefslogtreecommitdiff
path: root/752/CH6
diff options
context:
space:
mode:
Diffstat (limited to '752/CH6')
-rwxr-xr-x752/CH6/EX6.3.1/6_3_1.sce20
-rwxr-xr-x752/CH6/EX6.3.2/6_3_2.sce10
-rwxr-xr-x752/CH6/EX6.3.3/6_3_3.sce15
-rwxr-xr-x752/CH6/EX6.4.1/6_4_1.sce37
-rwxr-xr-x752/CH6/EX6.6.1/6_6_1.sce10
-rwxr-xr-x752/CH6/EX6.6.2/6_6_2.sce22
6 files changed, 114 insertions, 0 deletions
diff --git a/752/CH6/EX6.3.1/6_3_1.sce b/752/CH6/EX6.3.1/6_3_1.sce
new file mode 100755
index 000000000..cb90afabc
--- /dev/null
+++ b/752/CH6/EX6.3.1/6_3_1.sce
@@ -0,0 +1,20 @@
+clc;
+//page no 199
+// prob no 6.3.1
+// RC phase shift scillator
+// In the given problem small-signal o/p resistance Rc=40kohm
+// collector bias resistor, rc=10kohm,f=400 Hz;
+// all resistances are in Kohm and freq in Hz
+f=400;rc= 10; Rc= 40;
+// Minimum value of beta is given by Bomin= 23+(4*Ro/R)+(29*R/Ro)
+// For minimum beta Ro/R=2.7, we represent Ro/R=b
+b=2.7;
+Bomin=23+(4*b)+(29*1/b);
+disp(Bomin,'1.The minimum value of beta is');
+//Determination of R and C components
+//R0 is given by (rc*Rc)/(rc+Rc)
+R0=(rc*Rc)/(rc+Rc);
+R=2.7* R0;
+disp('Kohm',R,+'2.The value of resistor R=');
+c=1/(2*%pi*f*R*sqrt(6+(4*b)))*10^9;
+disp('pF',c,+'3.The value of capacitor is '); \ No newline at end of file
diff --git a/752/CH6/EX6.3.2/6_3_2.sce b/752/CH6/EX6.3.2/6_3_2.sce
new file mode 100755
index 000000000..4a42d5316
--- /dev/null
+++ b/752/CH6/EX6.3.2/6_3_2.sce
@@ -0,0 +1,10 @@
+clc;
+// page no 200
+// prob no 6.3.2
+// RC phase shift oscillator
+// all resistors are in Kohm
+f=800;R0=18;
+// R>>Ro should be chosen to minimize the effect of Ro on frequency. A number of values for R can be tried, and it will be found that R=100Kohm is reasonable.
+R=100;
+c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;// C in pF
+disp('pF',c,+'The value of capacitor is '); \ No newline at end of file
diff --git a/752/CH6/EX6.3.3/6_3_3.sce b/752/CH6/EX6.3.3/6_3_3.sce
new file mode 100755
index 000000000..b915f29d7
--- /dev/null
+++ b/752/CH6/EX6.3.3/6_3_3.sce
@@ -0,0 +1,15 @@
+clc;
+// page no 201
+// prob no 6_3_3
+// RC pase shift oscillator
+// All resistors are in Kohm
+f=1000; Ro=5;
+//Choose R>> R0 to minimize the effects of R0 on frequency. Select R=100kohm
+R=100;
+c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;
+disp('pF',c,+'The value of capacitor is ');
+// The required open -circuit voltage gain is
+Ao= 29+23*(Ro/R)+4*(Ro/R)^2;
+disp(Ao,'1.The required open -circuit voltage gain is');
+gm=Ao/Ro;
+disp('mS',gm,+'2.The value of gm is'); \ No newline at end of file
diff --git a/752/CH6/EX6.4.1/6_4_1.sce b/752/CH6/EX6.4.1/6_4_1.sce
new file mode 100755
index 000000000..35b38b022
--- /dev/null
+++ b/752/CH6/EX6.4.1/6_4_1.sce
@@ -0,0 +1,37 @@
+clc;
+// page no 205
+// prob no 6_4_1
+// colpitt's oscillator
+L=400*10^-6;// in H
+c1= 100;// in pF
+c2= 300;// in pF
+Q=200;
+Ro= 5*10^3;
+Bo=100;//beta value
+// The tuning capacitance is
+Cs=(c1*c2/(c1+c2));
+disp('pF',Cs,+'1.The value of capacitor is ');
+// the frequency of oscillation is obtained as
+f=1/(2*%pi*sqrt(L*Cs*10^-12));
+disp('Hz',f,'2.The frequency of oscillation is');
+// The dynamic impedence of the tuned circuit
+wo= 2*%pi *f;
+Rd=Q/(wo*Cs*10^-12);
+disp('ohm',Rd,+'3.The dynamic impedence of the tuned circuit');
+// The coil series resistance is
+r=wo*L/Q;
+disp('ohm',r,+'4.The coil series resistance is ');
+//The capacitor raio c= c1/c2=1/3, and therefore 1-c2/B0*c1 = 1 .
+// The starting value of gm is therefore given by
+c= c1/c2;
+gm=(1/Ro)*c +(c+3+2)*(1/Rd);
+disp('sec',gm,+'5.The value of gm is');
+// Assuming the input resistance is that of the transistor alone,
+R1=Bo/gm;
+disp('ohm',R1,+'6.The input resistance is');
+//The actual starting frequency is obtained from wo^2=(1/LCs)+(1/R1R2C1C2)
+wo2=1/((L*Cs*10^-12)+(1/R1*Ro*c1*c2*10^-12*10^-12));
+wo=sqrt(wo2);
+// Hence the frequency is
+f=wo/(2*%pi);
+disp('Hz',f,'7.The frequency of oscillation is'); \ No newline at end of file
diff --git a/752/CH6/EX6.6.1/6_6_1.sce b/752/CH6/EX6.6.1/6_6_1.sce
new file mode 100755
index 000000000..9d661ac06
--- /dev/null
+++ b/752/CH6/EX6.6.1/6_6_1.sce
@@ -0,0 +1,10 @@
+clc;
+// page no 211
+// prob no 6.6.1
+//In given problem zero bias capacitance co is 20pF
+Co=20;// in pF
+Vd=-7;// reverse bias voltage in volt
+//constant pottential of junction is 0.5
+a=0.5;// for abrupt junction
+Cd=Co/(1-(Vd/0.5))^a;
+disp('pF',Cd,+'The value of capacitor is '); \ No newline at end of file
diff --git a/752/CH6/EX6.6.2/6_6_2.sce b/752/CH6/EX6.6.2/6_6_2.sce
new file mode 100755
index 000000000..3bc7727f2
--- /dev/null
+++ b/752/CH6/EX6.6.2/6_6_2.sce
@@ -0,0 +1,22 @@
+clc;
+// page no 212
+// prob no 6.6.2
+//Voltage controlled Clapp oscillator
+// Capacitor is in pF and inductor in uH
+C1=300; C2=300; Cc=20; L=100;
+// A) With zero applied bias,the total tuning capacitor is
+Vd1=0;a=0.5;Co=20;
+Cd1=Co/(1-(Vd1/0.5))^a;
+Cs1=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd1));
+disp('pF',Cs1, +'1.The total tuning capacitor is');
+// The frequency of oscillation is
+f=1/(2*%pi*sqrt(L*10^-6*Cs1*10^-12));
+disp('Hz',f,'2.The frequency of oscillation is');
+// B) With a reverse bias of -7 v, the tuning capacitance becomes
+Vd2=-7;
+Cd2=Co/(1-(Vd2/0.5))^a;
+Cs2=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd2));
+disp('pF',Cs2, +'3.The total tuning capacitor is');
+// The frequency of oscillation is
+f=1/(2*%pi*sqrt(L*10^-6*Cs2*10^-12));
+disp('Hz',f,'4.The frequency of oscillation is'); \ No newline at end of file